Skip to main content
Log in

Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we study complex spatio-temporal solutions in nonlinear time-fractional reaction-diffusion systems. The main attention is paid to nonlinear dynamics near a bifurcation point. Despite the fact that the homogeneous state is stable at the parameters lower than bifurcation ones, a variety of complex solutions can also form in the subcritical domain. As an example, we consider a generalized fractional FitzHugh-Nagumo model. Depending on the given standard bifurcation parameters and the order of fractional derivative, the new types of steady auto-wave solutions in such systems have revealed. By computer simulation, it is shown that fractional reaction-diffusion possess much more complex nonlinear dynamics than their integer counterparts even at a subcritical bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abad, B. Yuste, K. Lindenberg, Reaction -subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. Phys. Rev. E 81 (2010), ID # 031115.

  2. B. Ahmad, J. Nieto, Existence results for a system of nonlinear fractional differential equations. Comp. Math. Appl. 58 (2009), 1838–1843.

    Article  Google Scholar 

  3. W. Andreas, I. Liehr. Dissipative Solitons in Reaction-Diffusion Systems: Mechanisms, Dynamics, Interaction. Springer-Verlag, Berlin-Heidelberg (2013).

    MATH  Google Scholar 

  4. A. Chikriy, I. Matichin, Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross. J. of Automation and Inform. Scien. 40 (2008), 1–11.

    Google Scholar 

  5. B. Datsko, V. Gafiychuk, Chaotic dynamics in Bonhoffer–van der Pol fractional reaction–diffusion system. Signal Proc. 91 (2011), 452–460.

    Article  Google Scholar 

  6. B. Datsko, V. Gafiychuk, Complex nonlinear dynamics in subdiffusive activator-inhibitor systems. Commun. in Nonlin. Sci. Numer. Simulat. 17 (2012), 1673–1680.

    Article  MathSciNet  Google Scholar 

  7. B. Datsko, V. Gafiychuk, I. Podlubny, Solitary travelling auto-waves in fractional reaction-diffusion systems. Commun. Nonlin. Sci. Numer. Simulat. 23 (2015), 378–387.

    Article  MathSciNet  Google Scholar 

  8. K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Meth. Appl. Mech. Eng. 194 (2005), 743–773.

    Article  Google Scholar 

  9. V. Gafiychuk, B. Datsko, Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. Phys. Rev. E 75 (2007), # R 055201-1-4.

  10. V. Gafiychuk, B. Datsko, Spatiotemporal pattern formation in fractional reaction-diffusion systems with indices of different order. Phys. Rev. E 77 (2008), # 066210-1-9.

  11. V. Gafiychuk, B. Datsko, Different Types of Instabilities and Complex Dynamics in Reaction-Diffusion Systems with Fractional Derivatives. J Comp. Nonlin. Dyn. 7 (2012), # 031001.

  12. V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems. J. Comp. Appl. Math. 372 (2008), 215–225.

    Article  MathSciNet  Google Scholar 

  13. V. Gafiichuk, B. Kerner, I. Lazurchak, V. Osipov, The mechanism of “leading center” in homogeneous active systems with diffusion. Mikroelektr. 20 (1991), 180–183.

    Google Scholar 

  14. J. Haubold, A.M. Mathai, R.K. Saxena, Further solutions of fractional reaction–diffusion equations in terms of the H-function. J. Comp. Appl. Math. 235 (2011), 1311–1316.

    Article  MathSciNet  Google Scholar 

  15. B. Henry, T. Langlands, S. Wearne, Turing pattern formation in fractional activator-inhibitor systems. Phys. Rev. E 72 (2005), # 026101.

  16. B. Kerner, V. Osipov. Autosolitons. Kluwer (1994).

    Book  Google Scholar 

  17. A. Kilbas, H. Srivastava, J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, (2006).

    MATH  Google Scholar 

  18. Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comp. Math. Appl. 59 (2010), 1810–1821.

    Article  MathSciNet  Google Scholar 

  19. D. Matignon, Stability results for fractional differential equations with applications to control processing. Comput. Eng. Systems Appl. 2 (1996), 963–970.

    Google Scholar 

  20. V. Mendez, S. Fedotov, W. Horsthemke. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, Spatial Instabilities. Springer (2010).

    Book  Google Scholar 

  21. R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    Article  MathSciNet  Google Scholar 

  22. C. Monje, Y. Chen, B. Vinagre, D. Xue, D. Feliu. Fractional-order Systems and Controls: Fundamentals and Applications. Springer (2010).

    Book  Google Scholar 

  23. Y. Nec, V.A. Volpert, A.A. Nepomnyashchy, Front propagation problems with subdiffusion. Discr. Cont. Dyn. Syst. 27 (2010), 827–846.

    Article  Google Scholar 

  24. A.A. Nepomnyashchy, Mathematical modelling of subdiffusion-reaction systems. Math. Model. Nat. Phenom. 11 (2016), 26–36.

    Article  MathSciNet  Google Scholar 

  25. G. Nicolis, I. Prigogine. Self-organization in Non-equilibrium Systems. Wiley (1997).

    MATH  Google Scholar 

  26. I. Petras. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Heidelberg (2011).

    Book  Google Scholar 

  27. I. Podlubny. Fractional Differential Equations. Academic Press (1999).

    MATH  Google Scholar 

  28. I. Podlubny, T. Skovranek, B. Datsko, Recent advances in numerical methods for partial fractional differential equations. 15th ICC Conf. Proc. (2014), 454–457.

    Google Scholar 

  29. Yu. Povstenko. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Springer, Heidelberg (2016).

    MATH  Google Scholar 

  30. H.-G. Purwins, H.U. Bodeker, S. Amiranashvili, Dissipative solitons. Adv. Phys. 59 (2010), 485–701.

    Article  Google Scholar 

  31. V. Tarasov. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer (2010).

    Book  Google Scholar 

  32. V. Uchaikin. Fractional Derivatives for Physicists and Engineers. Springer (2013).

    Book  Google Scholar 

  33. V. Vasiliev, Yu. Romanovskii, D. Chernavskii, V. Yakhno. Autowave Processes in Kinetic Systems: Spatial and Temporal Self-Organization in Physics, Chemistry, Biology, and Medicine. Kluwer (1987).

    Book  Google Scholar 

  34. G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371 (2002), 461–580.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Datsko.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datsko, B., Gafiychuk, V. Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point. FCAA 21, 237–253 (2018). https://doi.org/10.1515/fca-2018-0015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0015

MSC 2010

Key Words and Phrases

Navigation