Skip to main content
Log in

S1-Valued Sobolev maps

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We describe the structure of the space \( {W^{s,p}}\left( {{\mathbb{S}^n};{\mathbb{S}^1}} \right) \), where 0 < s < ∞ and 1 ≤ p < ∞. According to the values of s, p, and n, maps in \( {W^{s,p}}\left( {{\mathbb{S}^n};{\mathbb{S}^1}} \right) \) can either be characterised by their phases or by a couple (singular set, phase).

Here are two examples:

$$ \begin{array}{*{20}{c}} {{W^{{{1} \left/ {{2,6}} \right.}}}\left( {{\mathbb{S}^3};{\mathbb{S}^1}} \right) = \left\{ {{e^{\iota \varphi }}:\varphi \in {W^{{{1} \left/ {{2,6}} \right.}}} + {W^{1,3}}} \right\},} \\ {{W^{{{1} \left/ {{2,3}} \right.}}}\left( {{\mathbb{S}^2};{\mathbb{S}^1}} \right) \approx D \times \left\{ {{e^{\iota \varphi }}:\varphi \in {W^{{{1} \left/ {{2,3}} \right.}}} + {W^{{{{1,3}} \left/ {2} \right.}}}} \right\}.} \\ \end{array} $$

In the second example, D is an appropriate set of infinite sums of Dirac masses. The sense of ≈ will be explained in the paper.

The presentation is based on the papers of H.-M. Nguyen [22], of the author [20], and on a joint forthcoming paper of H. Brezis, H.-M. Nguyen, and the author [15].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alberti, S. Baldo, and G. Orlandi, “Functions with prescribed singularities,” J. Eur. Math. Soc., 5, No. 3, 275–311 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Bethuel, “A characterization of maps in H 1(B 3 , S 2) which can be approximated by smooth maps,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, No. 4, 269–286 (1990).

    MATH  MathSciNet  Google Scholar 

  3. F. Bethuel and D. Chiron, “Some questions related to the lifting problem in Sobolev spaces,” in Perspectives in nonlinear partial differential equations, Contemp. Math., 446, Amer. Math. Soc., Providence, RI (2007), pp. 125–152.

    Google Scholar 

  4. F. Bethuel, G. Orlandi, and D. Smets, “Improved estimates for the Ginzburg-Landau equation: the elliptic case,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4, No. 2, 319–355 (2005).

    MATH  MathSciNet  Google Scholar 

  5. F. Bethuel and X. Zheng, “Density of smooth functions between two manifolds in Sobolev spaces,” J. Funct. Anal., 80, 60–75 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Bourgain and H. Brezis, “On the equation div Y = f and application to control of phases,” J. Amer. Math. Soc., 16, No. 2, 393–426 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Bourgain, H. Brezis, and P. Mironescu, “Lifting in Sobolev spaces,” J. Anal. Math., 80, 37–86 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Bourgain, H. Brezis, and P. Mironescu, “H 1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation,” Publ. Math. Inst. Hautes Études Sci., 99, 1–115 (2004).

    MATH  MathSciNet  Google Scholar 

  9. J. Bourgain, H. Brezis, and P. Mironescu, “Lifting, degree, and distributional Jacobian revisited,” Comm. Pure Appl. Mathematics, 58, No. 4, 529–551 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Bousquet, “Topological singularities in \( {W^{s,p}}\left( {{\mathbb{S}^N},{\mathbb{S}^1}} \right) \),” J. Anal. Math., 102, 311–346 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Bousquet and P. Mironescu, in preparation.

  12. H. Brezis, J.-M. Coron, and E. Lieb, “Harmonic maps with defects,” Comm. Math. Phys., 107, No. 4, 649–705 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Brezis and P. Mironescu, “Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces,” J. Evol. Equ., 1, 387–404 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Brezis and P. Mironescu, “Density in W s,p,” in preparation.

  15. H. Brezis, P. Mironescu, and H.-M. Nguyen, in preparation.

  16. H. Brezis, P. Mironescu, and A. Ponce, “W 1,1-maps with values into \( {\mathbb{S}^1} \),” In: Geometric analysis of PDE and several complex variables, Contemp. Math., 368, Amer. Math. Soc. Providence, RI (2005), pp. 69–100.

    Google Scholar 

  17. H. Brezis and L. Nirenberg, “Degree theory and BMO. I. Compact manifolds without boundaries,” Selecta Math. (N.S.) 1, No. 2, 197–263 (1995).

  18. F. Demengel, “Une caractérisation des applications de \( {W^{1,p}}\left( {{B^N},{\mathbb{S}^1}} \right) \) qui peuvent être approchées par des fonctions régulières,” C. R. Acad. Sci. Paris Sér. I. Math., 310, No. 7, 553–557 (1990).

    MATH  MathSciNet  Google Scholar 

  19. M. Escobedo, “Some remarks on the density of regular mappings in Sobolev classes of SM-valued functions,” Rev. Mat. Univ. Complut. Madrid, 1, No. 1-3, 127–144 (1988).

    MATH  MathSciNet  Google Scholar 

  20. P. Mironescu, “Lifting of \( {\mathbb{S}^1} \)-valued maps in sums of Sobolev spaces,” submitted to J. Eur. Math. Soc.

  21. B. Muckenhoupt and R. Wheeden, “Weighted norm inequalities for fractional integrals,” Trans. Amer. Math. Soc., 192, 261–274 (1974).

    MATH  MathSciNet  Google Scholar 

  22. H.-M. Nguyen, “Inequalities related to liftings and applications,” C. R. Acad. Sci. Paris, Ser. I Math., 346, No. 17–18, 957–962 (2008).

    MATH  Google Scholar 

  23. A. Ponce, personal communication.

  24. T. Rivière, “Dense subsets of \( {H^{{{1} \left/ {2} \right.}}}\left( {{\mathbb{S}^2},{\mathbb{S}^1}} \right) \),” Ann. Global Anal. Geom., 18, No. 5, 517–528 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Schoen and K. Uhlenbeck, “A regularity theory for harmonic maps,” J. Differential Geom., 17, 307–335 (1982).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mironescu.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 35, Proceedings of the Fifth International Conference on Differential and Functional Differential Equations. Part 1, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironescu, P. S1-Valued Sobolev maps. J Math Sci 170, 340–355 (2010). https://doi.org/10.1007/s10958-010-0090-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-0090-z

Keywords

Navigation