Skip to main content
Log in

Factorization of the R-matrix and Baxter’s Q-operator

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The general rational solution of the Yang-Baxter equation with the symmetry algebra sℓ(2) can be represented as a product of simpler building blocks called \( \mathcal{R} \)-operators. \( \mathcal{R} \)-operators are constructed explicitly and have simple structure. Using \( \mathcal{R} \)-operators, we construct the two-parametric Baxter’s Q-operator for the generic inhomogeneous XXX-spin chain. In the case of a homogeneous XXX-spin chain, it is possible to reduce the general Q-operator to a much simpler one-parametric Q-operator. Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. P. Kulish and E. K. Sklyanin, “On solutions of the Yang-Baxter equation,” Zap. Nauchn. Sem. LOMI, 95, 129 (1980).

    MathSciNet  Google Scholar 

  2. M. Jimbo, “Introduction to the Yang-Baxter equation,” Int. J. Mod. Phys. A, 4, 3759 (1983); “Yang-Baxter equation in integrable systems,” in: M. Jimbo (ed.), Adv. Ser. Math. Phys., 10, World Scientific (1990).

    MathSciNet  Google Scholar 

  3. V. G. Drinfeld, “Hopf algebras and Yang-Baxter equation,” Soviet Math. Dokl., 32, 254 (1985); V. G. Drinfeld, “Quantum Groups,” in: Proc. Int. Congress Math., Berkeley, 1986, Amer. Math. Soc., Providence (1987), p. 798.

    Google Scholar 

  4. P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments,” Lect. Notes Phys., 151, 61 (1982); L. D. Faddeev, “How algebraic bethe Ansatz works for integrable model,” Les-Houches Lectures 1995, hep-th/9605187; E. K. Sklyanin, “Quantum inverse scattering method. Selected topics”, in: Mo-Lin Ge (ed.), Quantum Group and Quantum Integrable Systems (Nankai Lectures in Mathematical Physics), World Scientific (1992), pp. 63–97; hep-th/9211111.

    Article  MathSciNet  Google Scholar 

  5. P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, “Yang-Baxter equation and representation theory,” Lett. Math. Phys., 5, 393–403 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  6. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press (1982), Chap. 9–10.

  7. E. K. Sklyanin, private communication.

  8. E. K. Sklyanin, “Backlund transformations and Baxter’s Q-operator,” in: Integrable Systems: From Classical to Quantum (Montreal, 1999), pp. 227–250; CRM Proc. Lecture Notes, 26, Amer. Math. Soc., Providence, RI (2000); nlin.SI/0009009.

  9. S. E. Derkachov, “Factorization of the R-matrix. I,” Zap. Nauchn. Semin. POMI, 134, 335; math.QA/0503396.

  10. S. E. Derkachov, “Baxter’s Q-operator for the homogenous XXX spin chain,” J. Phys. A: Math. Gen., 32, 5299–5316 (1999); solv-int/9902015.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. E. Derkachov, G. P. Korchemsky, and A. N. Manashov, “Separation of variables for the quantum SL(2, R) spin chain,” JHEP, 0307 (2003) 047; hep-th/0210216.

  12. V. Pasquier and M. Gaudin, “The periodic Toda chain and a matrix generalization of the Bessel function recursion relations,” J. Phys. A: Math. Gen., 25, 5243–5252 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Yu. Volkov, “Quantum lattice KdV equation,” Lett. Math. Phys., 39, 313–329, (1997); hep-th/9509024.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Bazhanov, S. Lukyanov, and A. Zamolodchikov, “Integrable structure of conformal field theory. II. Q-operator and DDV equation,” Comm. Math. Phys., 190, 247–278 (1997); hep-th/9604044.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Antonov and B. Feigin, “Quantum group representation and Baxter equation,” Phys. Lett., B392, 115–122 (1997); hep-th/9603105.

    MathSciNet  Google Scholar 

  16. V. B. Kuznetsov, M. Salerno, and E. K. Sklyanin, “Quantum Backlund transformation for the integrable DST model,” J. Phys. A, 33, 171–189 (2000); solv-int/9908002.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. P. Pronko, “On the Baxter’s Q-operator for the XXX spin chain,” Comm. Math. Phys., 212, 687–701 (2000); hep-th/9908179; A. E. Kovalsky and G. P. Pronko, “Baxter Q-operators for integrable DST chain;” nlin.SI/0203030; A. E. Kovalsky and G. P. Pronko, “Baxters Q-operators for the simplest q-deformed model;” nlin.SI/0307040.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Rossi and R. Weston, “A generalized Q-operator for \( U_q (s\hat l_2 ) \) vertex models,” J. Phys. A, 35, 10015–10032 (2002); math-ph/0207004.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Zabrodin, “Commuting difference operators with elliptic coefficients from Baxter’s vacuum vectors,” J. Phys. A, 33, 3825 (2000); math.QA/9912218.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. V. Bazhanov and Yu. G. Stroganov, “Chiral Potts model as a descendant of the six vertex model,” J. Stat. Phys., 51, 799–817 (1990).

    Article  MathSciNet  Google Scholar 

  21. V. O. Tarasov, “Cyclic monodromy matrices for sℓ(n) trogonometric R-matrices,” Comm. Math. Phys., 158, 459–483 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. A. Belavin, A. V. Odessky, and R. A. Usmanov, “New relations in the algebra of the Baxter Q-operators,” hep-th/0110126.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Derkachov.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 347, 2007, pp. 144–166.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derkachov, S.E. Factorization of the R-matrix and Baxter’s Q-operator. J Math Sci 151, 2880–2893 (2008). https://doi.org/10.1007/s10958-008-9010-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9010-x

Keywords

Navigation