Skip to main content
Log in

Exact small deviation asymptotics for the Slepian and Watson processes in the Hilbert norm

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We find the exact asymptotic behavior of small ball probabilities in the Hilbert norm for the simplest form of the Slepian process and for the Watson process appearing in nonparametric statistics. Bibliography: 23 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abrahams, “Ramp crossings for Slepian’s process,” IEEE Trans. Inform. Theory, 30, No. 3, 574–575 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Institute of Mathematical Statistics, Hayward, California (1990).

    Google Scholar 

  3. L. Beghin, Y. Y. Nikitin, and E. Orsingher, “Exact small ball constants for some Gaussian processes under L 2-norm,” Zap. Nauchn. Semin. POMI, 298, 5–21 (2003).

    MATH  Google Scholar 

  4. P. Deheuvels and G. Martynov, “Karhunen—Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions,” in: High Dimensional Probability. III, Progress in Probability, 55, Birkhäuser Verlag, Basel (2003), pp. 57–93.

    Google Scholar 

  5. T. Dunker, M. A. Lifshits, and W. Linde, “Small deviation probabilities of sums of independent random variables,” in: High Dimensional Probability, Progress in Probability, 43, Birkhä user, Basel (1998), pp. 59–74.

    Google Scholar 

  6. F. Gao, J. Hannig, T.-Y. Lee, and F. Torcaso, “Comparison theorems for small deviations of random series,” Electron. J. Probab., 8, Paper No. 13, 1–17 (2003).

    MATH  MathSciNet  Google Scholar 

  7. F. Gao, J. Hannig, and F. Torcaso, “Integrated Brownian motions and exact L 2-small balls,” Ann. Probab., 31, 1320–1337 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Gao, J. Hannig, T.-Y. Lee, and F. Torcaso, “Laplace transforms via Hadamard factorization,” Electron. J. Probab., 8, No. 13, 1–20 (2003).

    MATH  MathSciNet  Google Scholar 

  9. B. Jamison, “Reciprocal processes: The stationary Gaussian case,” Ann. Math. Statist., 41, No. 5, 1624–1630 (1970).

    MATH  MathSciNet  Google Scholar 

  10. M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York—Berlin (1983).

    Google Scholar 

  11. W. V. Li, “Comparison results for the lower tail of Gaussian seminorms,” J. Theoret. Probab., 5, 1–31 (1992).

    Article  MathSciNet  Google Scholar 

  12. W. V. Li and Q. M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications,” in: Stochastic Processes: Theory and Methods, C. R. Rao and D. Shanbhag (eds.), Handbook of Statistics, Vol. 19, North-Holland, Amsterdam (2001), pp. 533–597.

    Google Scholar 

  13. M. A. Lifshits, “Asymptotic behavior of small ball probabilities,” in: Probability Theory and Mathematical Statistics, B. Grigelionis et al. (eds.), VSP/TEV, Vilnius (1999), pp. 453–468.

    Google Scholar 

  14. A. I. Nazarov and Ya. Yu. Nikitin, “Exact L 2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems,” Probab. Theory Related Fields, 129, No. 4, 469–494 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. I. Nazarov, “On the sharp constant in the small ball asymptotics of some Gaussian processes under L 2-norm,” J. Math. Sci., 117, 4185–4210 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  16. Ya. Yu. Nikitin and P. A. Kharinski, “Exact small deviation asymptotics in the L 2-norm for one class of Gaussian processes,” Zap. Nauchn. Semin. POMI, 311, 214–221 (2004).

    MATH  Google Scholar 

  17. E. Orsingher, “On the maximum of Gaussian Fourier series emerging in the analysis of random vibrations,” J. Appl. Probab., 26, No. 1, 182–188 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  18. L. A. Shepp, “First passage time for a particular Gaussian process,” Ann. Math. Statist., 42, 946–951 (1971).

    MATH  MathSciNet  Google Scholar 

  19. D. Slepian, “First passage time for a particular Gaussian process,” Ann. Math. Statist., 32, 610–612 (1961).

    MATH  MathSciNet  Google Scholar 

  20. E. Titchmarsh, Theory of Functions, 2nd edition, Oxford Univ. Press, London (1975).

    Google Scholar 

  21. G. S. Watson, “Goodness-of-fit tests on a circle,” Biometrika, 48, 109–114 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions. Vol. I: Basic Results, Springer-Verlag, New York (1987).

    Google Scholar 

  23. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions. Vol. II: Supplementary Notes and References, Springer-Verlag, New York (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 320, 2004, pp. 120–128.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, Y.Y., Orsingher, E. Exact small deviation asymptotics for the Slepian and Watson processes in the Hilbert norm. J Math Sci 137, 4555–4560 (2006). https://doi.org/10.1007/s10958-006-0250-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0250-3

Keywords

Navigation