Skip to main content
Log in

Comparison results for the lower tail of Gaussian seminorms

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let ξ=(ξ n ) be i.i.d.N(0, 1) random variables andq(x), q′(x):R →[0, ∞) be seminorms. We investigate necessary and sufficient conditions that the ratio ofP(q(ξ)<ε) andP(q′(ξ)<ε) goes to a positive constant as ε→0+. We give satisfactory answers forl 2-norms and also some results for sup-norms andl p-norms. Some applications are given to the rate of escape of infinite dimensional Brownian motion, and we give the lower tail of the Ornstein-Uhlenbeck process and a weighted Brownian bridge under theL 2-norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, T. W., and Darling, D. A. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes.Ann. Math. Stat. 23, 193–212.

    Google Scholar 

  2. Ash, R. B., and Gardner, m. F. (1975).Topics in Stochastic Processes Academic Press, New York.

    Google Scholar 

  3. Bass, R. F. (1988). Probability estimates for multiparameter Brownian processes.Ann. Prob 16, 251–264.

    Google Scholar 

  4. Borell, C. (1975). The Brunn-Minkowski inequality in Gauss space.Invent. Math. 30, 207–216.

    Google Scholar 

  5. Cox, D. D. (1980). Normalized Brownian motion on Banach spaces. Ph.D. thesis, University of Washington, Seattle.

    Google Scholar 

  6. Cox, D. D. (1982). On the existence of natural rate of escape functions for infinite dimensional Brownian motions.Ann. Prob. 10, 623–638.

    Google Scholar 

  7. Csáki, E. (1982). On small values of the square integral of a multiparameter Wiener process.Statistics and Probability. Proc. of the 3rd Pannonian Symp. on Math. Stat. D. Reidel, Boston, pp. 19–26.

    Google Scholar 

  8. Erickson, K. B. (1980). Rates of escape of infinite dimensional Brownian motion.Ann. Prob. 8, 325–338.

    Google Scholar 

  9. Fernique, X. (1970). Intégrabilité des vecteurs gaussiens.C. R. Acad. Sci. Paris 270, 1698–1699.

    Google Scholar 

  10. Hoffmann-Jørgensen, J., Shepp, L. A., and Dudley, R. M. (1979). On the lower tail of Gaussian seminorms.Ann. Prob. 7, 319–342.

    Google Scholar 

  11. Hwang, C. (1980). Gaussian measures of large balls in a Hilbert space.Proc. AMS 78, 107–110.

    Google Scholar 

  12. Ibragimov, I. A. (1982). On the probability that a Gaussian vector with values in a Hilbert space hits a sphere of small radius.J. Sov. Math. 20, 2164–2174.

    Google Scholar 

  13. Kac, M., and Siegert, A. J. F. (1947). An explicit representation of a stationary Gaussian process.Ann. Math. Stat. 18, 438–442.

    Google Scholar 

  14. Kamke, E. (1977).Differentialgleichungen. Teubner, Stuttgart.

    Google Scholar 

  15. Kuelbs, J. (1968). The invariance principle for a lattice of random variables.Ann. Math. Stat. 39, 382–389.

    Google Scholar 

  16. Kuelbs, J. (1978). Rates of growth for Banach space valued independent increments processes.Proc. 2nd Oberwolfach Conference on Probability on Banach Spaces. Lecture Notes in Mathematics, Vol. 709, pp. 151–169, Springer, Berlin.

    Google Scholar 

  17. Li, W. V. (1992). Lim inf results for the Wiener process and its increments under theL 2-norm.Probability Theory and Related Fields, to appear.

  18. Marcus, M. B., and Shepp, L. A. (1972). Sample behavior of Gaussian processes.Proc. Sixth. Berkeley Symp. Math. Stat. Prob. 2, 423–441.

    Google Scholar 

  19. Sytaya, G. N. (1974). On some asymptotic representations of the Gaussian measure in a Hilbert space. InTheory of Stochastic Processes. Publication No. 2, pp. 93–104, Ukrainian Academy of Sciences, Republican Interdepartmental Collection (in Russian).

  20. Watson, G. N. (1966).A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England.

    Google Scholar 

  21. Zolotarev, V. M. (1961). Concerning a certain probability problem.Theor. Probab. Appl. 6, 201–204.

    Google Scholar 

  22. Zolotarev, V. M. (1986). Asymptotic behavior of the Gaussian measure inl 2.J. Sov. Math. 24, 2330–2334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W.V. Comparison results for the lower tail of Gaussian seminorms. J Theor Probab 5, 1–31 (1992). https://doi.org/10.1007/BF01046776

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046776

Key Words

Navigation