Skip to main content
Log in

Behavior of Solutions of Quasilinear Elliptic Inequalities

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The paper considers solutions of the coercive inequalities

$$Lu \geqslant F\left( {x,u} \right),\quad \mathcal{L} \geqslant F\left( {x,u} \right)$$

defined on an arbitrary (possibly, unbounded) subset ℝn, where n ≥ 2, L and \(\mathcal{L}\) are elliptic operators of the form

$$L = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial x_i }}\left( {a_{ij} \left( x \right)\frac{\partial }{{\partial x_j }}} \right)\quad and} \quad \mathcal{L} = \sum\limits_{i,j = 1}^n {a_{ij} \left( x \right)\frac{{\partial ^2 }}{{\partial x_i \partial x_j }},}$$

, and F is a certain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Amann and M. Fila, “A Fujita-type theorem for the Laplace equation with a dynamical boundary condition,” Acta Math. Univ. Comenian, 66, 321–328 (1997).

    MathSciNet  Google Scholar 

  2. W. Arend, C. Batty, and Ph. Benilan, “Asymptotic stability of Schrodinger semigroups,” Math. Z., 209, No.4, 511–518 (1992).

    MathSciNet  Google Scholar 

  3. L. A. Bagirov and V. A. Kondrat'ev, “On elliptic equations in ℝn,” Differents. Uravn., 11, No.3, 498–504 (1975).

    MathSciNet  Google Scholar 

  4. C. Bangle and M. Essen, “On positive solutions of Emden equations in cone-like domains,” Arch. Ration. Mech. Anal., 112, 319–338 (1990).

    Google Scholar 

  5. P. Baras and M. Pierre, “Singularites eliminables pour des equations semilineaires,” Ann. Inst. Fourier, 34, 182–206 (1984).

    MathSciNet  Google Scholar 

  6. P. Baras and M. Pierre, “Critere d'existence de solutions positives pour des equations semilineaires non monotones,” Ann. Inst. H. Poincare Anal. Non Lineaire, 2, 185–212 (1985).

    MathSciNet  Google Scholar 

  7. J. Bebernes, “Blowup — when, where, and how?” Bull. Soc. Math. Belg. A., 40, 3–45 (1988).

    MATH  MathSciNet  Google Scholar 

  8. R. Benguria, S. Lorca, and C. Yarur, “Nonexistence of positive solutions of semilinear elliptic equations,” Duke Math. J., 74 (1994).

  9. H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, Analysis (volume dedicated to J. Moser), Academic Press, New York (1990), pp. 115–164.

    Google Scholar 

  10. H. Berestycki, I. Capuzzo Dolcetta, and L. Nirenberg, “Problemes elliptiques indefinis et theoremes de Liouville non lineaires,” C. R. Acad. Sci. Paris. Ser. 1, 317, 945–950 (1993).

    MathSciNet  Google Scholar 

  11. H. Berestycki, I. Capuzzo Dolcetta, and L. Nirenberg, “Superlinear indefinite elliptic problems and nonlinear Liouville theorems,” Topol. Methods Nonlinear Anal., 4, 59–78 (1995).

    MathSciNet  Google Scholar 

  12. L. Bers, F. John, and M. Schechter, Partial Differential Equations, Interscience, New York (1964).

    Google Scholar 

  13. M.-F. Bidaut-Veron, “Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,” Arch. Ration. Mech. Anal., 107, 293–324 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  14. M.-F. Bidaut-Veron and P. Grillot, “Asymptotic behavior of elliptic systems with mixed absoption and source terms,” Asymptot. Anal., 19, 117–147 (1999).

    MathSciNet  Google Scholar 

  15. M.-F Bidaut-Veron and T. Raoux, “Asymptotics of solutions of some nonlinear elliptic systems,” Comm. Partial Differential Equations, 21, 1035–1086 (1996).

    MathSciNet  Google Scholar 

  16. M.-F. Bidaut-Veron and L. Veron, “Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations,” Invent. Math., 106, 489–539 (1991).

    Article  MathSciNet  Google Scholar 

  17. I. Birindelli and E. Mitidieri, “Liouville theorems for elliptic inequalities and applications,” Proc. Roy. Soc. Edinburgh, Ser. A, 128, 1217–1247 (1998).

    MathSciNet  Google Scholar 

  18. G. N. Blokhina, “Phragmen-Lindelof-type theorems for a linear 2nd-order elliptic equations,” Dokl. Akad. Nauk SSSR, No. 4, 727–730 (1965).

  19. G. N. Blokhina, “Phragmen-Lindelof-type theorems for a linear 2nd-order elliptic equation,” Mat. Sb., 84, No.4, 507–531 (1970).

    Google Scholar 

  20. H. Brezis and W. A. Strauss, “Semilinear second-order elliptic equations in L 1,” J. Math. Soc. Japan, 25, 565–590 (1973).

    MathSciNet  Google Scholar 

  21. H. Brezis and L. Veron, “Removable singularities of some nonlinear elliptic equations,” Arch. Ration. Mech. Anal., 75, 1–6 (1980).

    Article  MathSciNet  Google Scholar 

  22. H. Brezis and X. Cabre, “Some simple nonlinear PDEs without solutions,” Boll. Unione Mat. Ital. B., 8, 223–262 (1998).

    MathSciNet  Google Scholar 

  23. G. Garisti and E. Mitidieri, “Nonexistence of positive solutions of quasilinear equations,” Adv. Differential Equations, 2, 319–359 (1997).

    MathSciNet  Google Scholar 

  24. P. Clement, R. Manasevich, and E. Mitidieri, “Positive solutions for a quasilinear system via blow-up,” Comm. Partial Differential Equations, 18, No.12, 2071–2106 (1993).

    MathSciNet  Google Scholar 

  25. K. Deng and H. A. Levine, “The role of critical exponents in blow-up theorems,” J. Math. Anal. Appl., 243, 85–126 (2000).

    Article  MathSciNet  Google Scholar 

  26. H. Egnell, “Positive solutions of semilinear equations in cones,” Trans. Amer. Math. Soc., 330, No.1, 191–201 (1992).

    MATH  MathSciNet  Google Scholar 

  27. Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “On the necessary conditions of global existence of solutions to a quasilinear inequality in the half-space,” C. R. Acad. Sci. Paris. Ser. 1, 330, 93–98 (2000).

    MathSciNet  Google Scholar 

  28. S. D. Eidelman and V. A. Kondratiev, “Positive solutions of quasilinear Emden-Fowler systems of arbitrary order,” Russian J. Math. Phys., 2, No.4, 535–540 (1994).

    MathSciNet  Google Scholar 

  29. S. D. Eidelman and V. A. Kondratiev, “On the summability in L p of positive solutions of elliptic equations,” Russian J. Math. Phys., 7, No.2, 205–215 (2000).

    Google Scholar 

  30. P. Felmer and D. G. de Figueiredo, “Superquadratic elliptic systems,” Trans. Amer. Math. Soc., 343, 99–116 (1994).

    MathSciNet  Google Scholar 

  31. R. Filippucci and P. Pucci, “Nonexistence and other properties for solutions of quasilinear elliptic equations,” Differential Integral Equations, 8, 525–538 (1995).

    MathSciNet  Google Scholar 

  32. Y. Furusho, T. Kusano, and A. Ogata, “Symmetric positive entire solutions of second-order quasilinear degenerate elliptic equations,” Arch. Ration. Mech. Anal., 127, 231–254 (1994).

    Article  MathSciNet  Google Scholar 

  33. T. Gallouet and J.-M. Morel, “Resolution of a semilinear equation in L 1,” Proc. Roy. Soc. Edinburgh Ser. A, 96A, 275–288 (1984).

    MathSciNet  Google Scholar 

  34. A. Galsina, X. Mora, and J. Sola-Morales, “The dynamical approach to elliptic problems in cylindrical domains and a study of their parabolic singular limit,” J. Differential Equations, 102, 244–304 (1993).

    MathSciNet  Google Scholar 

  35. M. L. Gerver and E. M. Landis, “A certain generalization of the mean-value theorem for several variables,” Dokl. Akad. Nauk SSSR, No. 4, 761–764 (1962).

    Google Scholar 

  36. B. Gidas and J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations,” Comm. Pure Appl. Math., 34, 525–598 (1981).

    MathSciNet  Google Scholar 

  37. B. Gidas and J. Spruck, “A priori bounds for positive solutions of nonlinear elliptic equations,” Comm. Partial Differential Equations, 6, No.8, 883–901 (1981).

    MathSciNet  Google Scholar 

  38. P. Halmos, Measure Theory [Russian translation], IL, Moscow (1953).

    Google Scholar 

  39. E. K. Haviland, “A note on unrestricted solutions of the differential equation Δu = f(u),” J. London Math. Soc., 26, 210–214 (1951).

    MATH  MathSciNet  Google Scholar 

  40. J. B. Keller, “On solutions of Δu = f(u),” Comm. Pure Appl. Math., 10, No.4, 503–510 (1957).

    MATH  MathSciNet  Google Scholar 

  41. I. T. Kiguradze, “On monotone solutions of nonlinear ordinary differential equations,” Dokl. Akad. Nauk SSSR, 181, No.5, 1054–1057 (1968).

    MATH  MathSciNet  Google Scholar 

  42. I. T. Kiguradze and T. A. Chanturiya, Asymptotic Properties of Ordinary Differential Equations [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  43. V. A. Kondrat'ev, “On qualitative properties of solutions of semilinear elliptic equations,” Trudy Seminara im. I. G. Petrovskogo, No. 16, 186–190 (1992).

  44. V. A. Kondrat'ev and A. A. Kon'kov, “On properties of solutions of a class of nonlinear second-order equations,” Mat. Sb., 185, No.9, 81–94 (1994).

    Google Scholar 

  45. V. A. Kondrat'ev and E. M. Landis, “Semilinear equations,” Usp. Mat. Nauk, 42, No.5, 233–234 (1987).

    Google Scholar 

  46. V. A. Kondrat'ev and E. M. Landis, “On qualitative properties of solutions of a certain nonlinear second-order equation,” Mat. Sb., 135, No.3, 346–360 (1988).

    MathSciNet  Google Scholar 

  47. V. A. Kondrat'ev and E. M. Landis, “Qualitative theory of linear second-order partial differential equations,” in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Basic Directions [in Russian], Vol. 32, All-Union Institute for Scientific and Technical Information (VINITI), USSR Akad. of Sci., Moscow (1988), pp. 99–215.

    Google Scholar 

  48. V. A. Kondrat'ev and E. M. Landis, “Semilinear second-order equations with nonnegative characteristic form,” Mat. Zametki, 44, No.4, 457–468 (1988).

    MathSciNet  Google Scholar 

  49. V. A. Kondrat'ev and O. A. Oleinik, “On the behavior at infinity of a certain class of nonlinear elliptic equations in a cylindric domain,” Dokl. Ross. Akad. Nauk, 341, No.4, 446–449 (1995).

    MathSciNet  Google Scholar 

  50. V. A. Kondrat'ev and S. D. Eidel'man, “On positive solutions of certain quasilinear equations,” Dokl. Ross. Akad. Nauk, 331, No.3, 278–280 (1993).

    Google Scholar 

  51. V. A. Kondrat'ev and S. D. Eidel'man, “On positive solutions of quasilinear elliptic equations,” Dokl. Ross. Akad. Nauk, 334, No.4, 427–428 (1994).

    Google Scholar 

  52. V. A. Kondratiev and O. A. Oleinik, “On asymptotic behavior of solutions of some nonlinear elliptic equations in unbounded domains,” in: Partial Differential Equations and Related Subjects, Pitman Research Notes in Math. Series, Vol. 269, Harlow, Longman (1992), pp. 163–195.

    Google Scholar 

  53. V. A. Kondratiev and L. Veron, “Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations,” Asymptot. Anal., 14, 117–156 (1997).

    MathSciNet  Google Scholar 

  54. A. A. Kon'kov, “Behavior of solutions of nonlinear second-order elliptic inequalities,” Nonlinear Anal., 42, No.7, 1253–1270 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  55. A. A. Kon'kov, “On nonnegative solutions of quasilinear elliptic inequalities in domains belonging to ℝ2,” Russian J. Math. Phys., 7, No.4, 371–401 (2000).

    MATH  MathSciNet  Google Scholar 

  56. A. A. Kon'kov, “On the behavior at infinity of solutions of a certain class of nonlinear second-order equations,” Mat. Zametki, 60, No.1, 30–39 (1996).

    MATH  MathSciNet  Google Scholar 

  57. A. A. Kon'kov, “On the behavior of solutions of quasilinear elliptic inequalities containing lower derivative terms,” Mat. Zametki, 64, No.6, 946–949 (1998).

    MATH  MathSciNet  Google Scholar 

  58. A. A. Kon'kov, “On nonnegative solutions of quasilinear elliptic inequalities,” Izv. Ross. Akad. Nauk, Ser. Mat., 63, No.2, 41–126 (1999).

    MATH  MathSciNet  Google Scholar 

  59. A. A. Kon'kov, “On the behavior of solutions of quasilinear elliptic inequalities in a neighborhood of a singular point,” Dokl. Ross. Akad. Nauk, 366, No.5, 595–598 (1999).

    MATH  MathSciNet  Google Scholar 

  60. A. A. Kon'kov, “On nonnegative solutions of quasilinear elliptic inequalities in domains located in a layer,” Differents. Uravn., 36, No.7, 889–897 (2000).

    MATH  MathSciNet  Google Scholar 

  61. A. A. Kon'kov, “On solutions of quasilinear elliptic inequalities vanishing in a neighborhood of infinity,” Mat. Zametki, 67, No.1, 153–156 (2000).

    MATH  MathSciNet  Google Scholar 

  62. A. A. Kon'kov, “On solutions of non-autonomous ordinary differential equations,” Izv. Ross. Akad. Nauk, Ser. Mat., 65. No.2, 81–126 (2001).

    MATH  MathSciNet  Google Scholar 

  63. A. A. Kon'kov, “On properties of solutions of elliptic inequalities with nonlinearity in the principal part,” Dokl. Ross. Akad. Nauk, 383, No.1, 15–19 (2002).

    MathSciNet  Google Scholar 

  64. A. A. Kon'kov, “Comparison theorems for elliptic inequalities with nonlinearity in the principal part,” Usp. Mat. Nauk, 57, No.3, 141–142 (2002).

    MATH  MathSciNet  Google Scholar 

  65. A. A. Kon'kov, “Behavior of solutions of ellipic inequalities in domains with arbitrary geometry,” Dokl. Ross. Akad. Nauk, 387, No.5 (2002).

  66. V. V. Kurta, Certain Problems of the Qualitative Theory of Nonlinear Second-Order Equations [in Russian], Dissertation, Steklov Institute of Mathematics, Moscow (1994).

    Google Scholar 

  67. V. V. Kurta, “On the problem of absence of entire positive solutions of semilinear elliptic equations,” Usp. Mat. Nauk, 50, No.4, 131 (1995).

    MathSciNet  Google Scholar 

  68. V. V. Kurta, “On the problem of absence of positive solutions of elliptic equations,” Mat. Zametki, 65, No.4, 552–561 (1999).

    MATH  MathSciNet  Google Scholar 

  69. V. V. Kurta, “On the absence of positive solutions of semilinear elliptic equations,” Trudy Mat. Inst. Ross. Akad. Nauk, 227, 162–169 (1999).

    MATH  MathSciNet  Google Scholar 

  70. I. Kuzin and S. Pokhozhaev, “Entire solutions of semilinear elliptic equations,” Progr. Nonlinear Differential Equations Appl., 33 (1991).

  71. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  72. E. M. Landis, “Certain problems of qualitative theory of second-order elliptic equations,” Usp. Mat. Nauk, 18, No.4, 3–62 (1963).

    MATH  MathSciNet  Google Scholar 

  73. E. M. Landis, Second-Order Equations of Elliptic and Parabolic Types [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  74. E. M. Landis, “On the behavior of solutions of higher-order elliptic equations in unbounded domains,” Trudy Mosk. Mat. Obshch., 31, (1974).

  75. N. S. Landkof, Foundations of Modern Potential Theory [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  76. G. G. Laptev, “Absence of global positive solutions of systems of semilinear elliptic inequalities in cones,” Izv. Ross. Akad. Nauk, Ser. Mat. 64, No.6, 107–124 (2000).

    MATH  MathSciNet  Google Scholar 

  77. G. G. Laptev, “On the absence of solutions for a certain class of singular semilinear differential inequalities,” Trudy Mat. Inst. Ross. Akad. Nauk, 232, 223–235 (2001).

    MATH  MathSciNet  Google Scholar 

  78. H. A. Levine, “The role of critical exponents in blowup problems,” SIAM Rev., 32, 262–288 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  79. H. A. Levine and L. E. Payne, “On the nonexistence of entire solutions to nonlinear second order elliptic equations,” SIAM J. Math. Anal., 7, No.3, 337–343 (1976).

    Article  MathSciNet  Google Scholar 

  80. Yi Li and J. Santanilla, “Existence and nonexistence of positive singular solutions for semilinear elliptic problems with applications in astrophysics,” Differential Integral Equations, 8, 1369–1383 (1995).

    MathSciNet  Google Scholar 

  81. W. Littman, G. Stampacchia, and B. Weinberger, “Regular points for elliptic equations with discontinuous coefficients,” Ann. Scuola Norm. Sup. Pisa. Ser. 3, 17, No.1–2, 43–77 (1963).

    MathSciNet  Google Scholar 

  82. V. G. Maz'ya, “On continuity at a boundary point of solutions of quasilinear elliptic equations,” Vestnik LGU, No. 13, 42–55 (1972).

    Google Scholar 

  83. V. G. Mazya, S. L. Sobolev Spaces [in Russian], LGU, Leningrad (1985).

    Google Scholar 

  84. E. Mitidieri, “A Rellich type identity and applications,” Comm. Partial Differential Equations, 18, 125–151 (1993).

    MATH  MathSciNet  Google Scholar 

  85. E. Mitidieri, “Nonexistence of positive solutions of semilinear elliptic systems in ℝn,” Differential Integral Equations, 9, 465–479 (1996).

    MATH  MathSciNet  Google Scholar 

  86. E. Mitidieri and S. I. Pokhozhaev, “Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on ℝn,” J. Evolution Equations, 1, 189–220 (2001).

    MathSciNet  Google Scholar 

  87. E. Mitidieri and S. I. Pokhozhaev, “Absence of global positive solutions of quasilinear elliptic inequalities,” Dokl. Ross. Akad. Nauk, 359, No.4, 456–460 (1998).

    MathSciNet  Google Scholar 

  88. E. Mitidieri and S. I. Pokhozhaev, “Absence of positive solutions of quasilinear elliptic problems in ℝn,” Trudy Mat. Inst. Ross. Akad. Nauk, 227, 192–222 (1990).

    Google Scholar 

  89. E. Mitidieri and S. I. Pokhozhaev, “Absence of positive solutions of systems of quasilinear elliptic equations and inequalities in ℝn,” Dokl. Ross. Akad. Nauk, 366, No.1, 13–17 (1999).

    MathSciNet  Google Scholar 

  90. E. Mitidieri and S. I. Pokhozhaev, A Priori Estimates and Absence of Solutions of Nonlinear Partial Differential Equations and Inequalities [in Russian], Trudy Mat. Inst. Ross. Akad. Nauk, 234, Nauka, Moskow (2001).

    Google Scholar 

  91. J. Moser, On Harnak's theorem for elliptic differential equations,” Comm. Pure Appl. Math., 14, No.3, 577–591 (1961).

    MATH  MathSciNet  Google Scholar 

  92. W.-M. Ni, “On a singular elliptic equation,” Proc. Amer. Math. Soc., 88, 614–616 (1983).

    MATH  MathSciNet  Google Scholar 

  93. W.-M. Ni and J. Serrin, “Nonexistence theorems for quasilinear partial differential equations,” Rend. Circ. Mat. Palermo (2) Suppl., 8, 171–185 (1985).

    MathSciNet  Google Scholar 

  94. W.-M. Ni and J. Serrin, “Nonexistence theorems for singular solutions of quasilinear partial differential equations,” Comm. Pure Appl. Math., 39, 379–399 (1986).

    MathSciNet  Google Scholar 

  95. R. Osserman, “On the inequality Δuf(u),” Pacific J. Math., 7, No.4, 1641–1647 (1957).

    MATH  MathSciNet  Google Scholar 

  96. S. I. Pokhozhaev, “On the boundary-value problem for the equation Δu = u 2,” Dokl. Akad. Nauk SSSR, 140, No.3, 518–521 (1961).

    Google Scholar 

  97. S. I. Pokhozhaev, “On solvability of elliptic equations in ℝn with supercritical exponent of nonlinearity,” Dokl. Akad. Nauk SSSR, 313, No.6, 1356–1360.

  98. S. I. Pokhozhaev, “On entire solutions of a certain class of quasilinear elliptic equations,” Dokl. Akad. Nauk SSSR, 318, No.6, 1319–1324 (1991).

    MATH  Google Scholar 

  99. S. I. Pokhozhaev, “On asymptotics of entire radial solutions of quasilinear elliptic equations,” Dokl. Akad. Nauk SSSR, 320, No.4, 808–813 (1991).

    MATH  Google Scholar 

  100. S. I. Pokhozhaev, “On entire solutions of quasilinear elliptic equations,” Dokl. Akad. Nauk SSSR, 318, No.4, 815–820 (1991).

    MATH  MathSciNet  Google Scholar 

  101. S. I. Pokhozhaev, “On entire radial solutions of quasilinear elliptic equations,” Trudy Mat. Inst. Ross. Akad. Nauk, 204, 251–273 (1993).

    MATH  Google Scholar 

  102. S. I. Pokhozhaev, “Essentially nonlinear capacities induced by differential operators,” Dokl. Ross. Akad. Nauk, 357, No.5, 592–594 (1997).

    MATH  MathSciNet  Google Scholar 

  103. L. S. Pontryagin, Ordinary Differential Equations [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  104. R. Redheffer, “On entire solutions of nonlinear equations,” Bull. Amer. Math. Soc., 62, 408 (1956).

    Google Scholar 

  105. W. Reichel and H. Zou, “Nonexistence results for semilinear cooperative elliptic systems via moving spheres,” J. Differential Equations, 161, 219–243 (2000).

    Article  MathSciNet  Google Scholar 

  106. A. Sard, “The measure of the critical values of differential maps,” Bull. Amer. Math. Soc., 48, 883–897 (1942).

    MATH  MathSciNet  Google Scholar 

  107. J. Serrin, “Positive solutions of prescribed mean curvature problem,” in: Lecture Notes in Math., 1340, Springer, New York (1998).

    Google Scholar 

  108. J. Serrin and H. F. Weinberger, “Isolated singularities of solutions of linear elliptic equations,” Amer. J. Math., 88, No.1, 258–272 (1966).

    MathSciNet  Google Scholar 

  109. J. Serrin and H. Zou, “Nonexistence of positive solutions of Lane-Emden systems,” Differential Integral Equations, 9, 635–653 (1996).

    MathSciNet  Google Scholar 

  110. J. Serrin and H. Zou, “Existence of positive solutions of Lane-Emden systems,” Atti Sem. Mat. Fis. Univ. Modena, 46, 369–380 (1998).

    MathSciNet  Google Scholar 

  111. J. Serrin and H. Zou, “Symmetry of ground states of quasilinear elliptic equations,” Arch. Ration. Mech. Anal., 148, 265–290 (1999).

    Article  MathSciNet  Google Scholar 

  112. R. Soranzo, “Isolated singularities of positive solutions of superlinear biharmonic equations,” Potential Anal., 6, 57–85 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  113. G. Stampacchia, “Contributi alla regolarizzazione della soluzioni del problemi al contoro equazioni del secondo ordine ellitici,” Ann. Scuola Norm. Sup. Pisa. Ser. 3, 12, 223–245 (1958).

    MATH  MathSciNet  Google Scholar 

  114. G. Stampacchia, “Le probleme de Dirichlet pour les equations elliptique second ordre a coefficients discontinus,” Ann. Inst. Fourier,” 15, No.1, 189–257 (1965).

    MATH  MathSciNet  Google Scholar 

  115. N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations,” Comm. Pure Appl. Math., 20, 721–744 (1967).

    MATH  MathSciNet  Google Scholar 

  116. J. L. Vazques, “Existence of solutions bounded at infinity for a semilinear elliptic equations on ℝn,” Selecta Math., 31, No.1, 11–22 (1980).

    Google Scholar 

  117. J. L. Vazques, “An a priori interior estimate for the solutions of a nonlinear problem representing weak diffusion,” Nonlinear Anal., 5, 95–103 (1981).

    MathSciNet  Google Scholar 

  118. J. L. Vazques, “On a semilinear equation in ℝ2 involving bounded measures,” Proc. Roy. Soc. Edinburgh, Ser. A, 95A, 181–202 (1983).

    Google Scholar 

  119. J. L. Vazques and L. Veron, “Singularities of elliptic equations with an exponential nonlinearity,” Math. Anal., 269, 119–135 (1984).

    Google Scholar 

  120. J. L. Vazques and L. Veron, “Isolated singularities of some semilinear elliptic equations,” J. Differential Equations, 60, 301–322 (1985).

    MathSciNet  Google Scholar 

  121. L. Veron, “Solutions singuliere d'equations elliptiques semilineaires,” C. R. Acad. Sci. Paris Ser. I Math., 288, 867–869 (1979).

    MATH  MathSciNet  Google Scholar 

  122. L. Veron, “Singular solutions of some nonlinear elliptic equations,” Nonlinear Anal., 5, No.3, 225–242 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  123. L. Veron, “Comportement asymptotique des solutions d'equations elliptiques semilineaires dans ℝn,” Ann. Math. Pure Appl., 127, 25–50 (1981).

    MATH  MathSciNet  Google Scholar 

  124. L. Veron, “Global behavior and symmetry properties of singular solutions of nonlinear elliptic equations,” Ann. Fac. Sci. Toulouse Math. (5), 6, 1–31 (1984).

    MATH  MathSciNet  Google Scholar 

  125. L. Veron, Singularities of Solutions of Second Order Quasilinear Equations, Addison Wesley Longman Limited (1996), Vol. 353.

  126. W. Walter, “Uber ganze Losungen der Differentialgleichung Δu = f(u),” Uber. Deutsch. Math. Verein., 57, 94–102 (1955).

    MATH  Google Scholar 

  127. H. Wittich, “Ganze Losungen der Differentialgleichung Δu = e u,” Math. Z., 49, 579–582 (1944).

    MATH  MathSciNet  Google Scholar 

  128. C. Yarur, “Nonexistence of positive singular solutions for a class of semilinear elliptic systems,” J. Differential Equations, 8, 1–22 (1996).

    Google Scholar 

  129. H. Zou, “Symmetry of ground states of semilinear elliptic equations with mixed Sobolev growth,” Indiana Univ. Math. J., 45, 221–240 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  130. H. Zou, “On positive solutions for semilinear elliptic equations with an indefinite nonlinearity via bifurcation,” J. Differential Equations, 13, 133–150 (2000).

    MATH  Google Scholar 

  131. H. Zou, “Symmetry of ground states for a semilinear elliptic system,” Trans. Amer. Math. Soc., 352, 1217–1245 (2000).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika. Fundamental'nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 7, Partial Differential Equations, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon'kov, A.A. Behavior of Solutions of Quasilinear Elliptic Inequalities. J Math Sci 134, 2073–2237 (2006). https://doi.org/10.1007/s10958-006-0096-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0096-8

Keywords

Navigation