Skip to main content
Log in

Diagram Invariants of Knots and the Kontsevich Integral

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is devoted to the solution of the integration problem for higher derivatives of finite-type invariants (so-called weight systems) up to real invariants defined on the space of knots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Alexander, “Topological invariants of knots and links,” Trans. Amer. Math. Soc. 20, 275–306 (1923).

    Google Scholar 

  2. V. I. Arnold, “Plane curves, their invariants, perestroikas, and classification,” in: Singularities and Bifurcations. tAdv. Sov. Math., 21, Amer. Math. Soc., Providence, Rhode Island (1994), pp. 33–91.

    Google Scholar 

  3. V. I. Arnold, “Vassiliev's theory of discriminants and knots,” in: Proc. 1 Eur. Math. Congr. (Paris, July 1992), 1, Birkhauser, Basel-Boston-Berlin (1992), pp. 3–29.

    Google Scholar 

  4. D. Bar-Natan, “On the Vassiliev knot invariants,” Topology 34, 423–472 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Bar-Natan, S. Garoufalidis, L. Rozansky, and D. Thurston, “Wheels, wheeling, and the Kontsevich integral of the unknot,” Isr. J. Math., 119, 217–237 (2000).

    MathSciNet  Google Scholar 

  6. J. Birman, Braids, links, and mapping class groups,” Ann. Math. Stud., 82, Princeton Univ. Press, Princeton, New Jersey (1974).

    Google Scholar 

  7. J. Birman, “New points of view in knot theory,” Bull. Amer. Math. Soc., 28, 253–287 (1993).

    MATH  MathSciNet  Google Scholar 

  8. J. Birman and X. S. Lin, “Knot polynomials and Vassiliev's invariants,” Invent. Math., 111, 225–270 (1993).

    Article  MathSciNet  Google Scholar 

  9. J. Birman and M. D. Hirsch, “A new algorithm for recognizing the unknot,” Geom. Topol., 2, 175–220 (1998).

    MathSciNet  Google Scholar 

  10. P. Cartier, “Construction combinatoire des invariants de Vassiliev-Kontsevich des noeuds,” C. R. Acad. Sci. Paris, 316, 1205–1210 (1993).

    MATH  MathSciNet  Google Scholar 

  11. S. V. Chmutov, S. V. Duzhin, and S. K. Lando, “Vassiliev knot invariants,” Adv. Sov. Math., 21, 117–147 (1994).

    MathSciNet  Google Scholar 

  12. S. V. Duzhin and S. V. Chmutov, “Knots and their invariants,” Mat. Prosv., Ser. 3, 3, 59–93 (1999).

    Google Scholar 

  13. S. V. Chmutov and A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from sl 2,” Topology, 36, 153–178 (1997).

    Article  MathSciNet  Google Scholar 

  14. O. T. Dasbach and S. Hougardy, “Does the Jones polynomial detect unknottedness?” J. Experimental Math., 6, No.1, 51–56 (1997).

    MathSciNet  Google Scholar 

  15. M. Domergue and P. Donato, “Integrating a weight system of order n to an invariant of (n − 1)-singular knots,” J. Knot Theory Ramifications, 5, No.1, 23–35 (1996).

    Article  MathSciNet  Google Scholar 

  16. V. G. Drinfeld, “Quasi-Hopf algebras,” Algebra Analiz, 1, No.6, 114–148 (1989).

    MathSciNet  Google Scholar 

  17. V. G. Drinfeld, “On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(Q/Q),” Algebra Analiz, 2, No.4, 149–181 (1990).

    MATH  MathSciNet  Google Scholar 

  18. Encyclopedia of Mathematics [in Russian], Moscow (1985).

  19. S. Gordan and J. Luecke, “Knots are determined by their complements,” J. Amer. Math. Soc., 2, 371–415 (1989).

    MathSciNet  Google Scholar 

  20. M. N. Gusarov, “A new form of the Conway-Jones polynomial of oriented links,” in: Topology of Manifolds and Varieties (O. Viro, ed.), Amer. Math. Soc., Providence, Rhode Island (1994), pp. 167–172.

    Google Scholar 

  21. J. Hoste, M. Thistlethwaite, and J. Weeks, “The first 1,701,936 knots,” Math. Intelligencer, 20, 33–48 (1998).

    MathSciNet  Google Scholar 

  22. J. Hoste, M. Thistlethwaite, and J. Weeks, KnotScape, http://www.math.utk.edu/∼morwen/

  23. V. F. R. Jones, “Polynomial invariants of knots via von Neumann algebras,” Bull. Amer. Math. Soc., 12, 103–111 (1985).

    MATH  MathSciNet  Google Scholar 

  24. V. F. R. Jones, “Hecke algebra representations of braid groups and link polynomials,” Ann. Math., 126, 335–388 (1987).

    MATH  Google Scholar 

  25. C. Kassel, Quantum Groups, Grad. Texts Math., 155, Springer-Verlag, New York-Heidelberg-Berlin (1995).

    Google Scholar 

  26. L. Kauffman, “State models and the Jones polynomial,” Topology, 26, 395–407 (1987).

    MATH  MathSciNet  Google Scholar 

  27. L. Kauffman, Knots and Physics, World Scientific, Singapore (1993).

    Google Scholar 

  28. M. Kontsevich, “Vassiliev's knot invariants,” in: Adv. Sov. Math., Amer. Math. Soc., 16, No. 2, Providence, Rhode Island (1993), pp. 137–150.

  29. C. Kosniowski, A First Course in Algebraic Topology, Cambridge Univ. Press, Cambridge (1980).

    Google Scholar 

  30. R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Grad. Texts Math., 57. Springer-Verlag, New York-Heidelberg-Berlin (1977).

    Google Scholar 

  31. J. Lannes, “Sur les invariants de Vassiliev de degree inferieur ou egal a 3,” L'Enseignement Math., 39, 295–316 (1993).

    MATH  MathSciNet  Google Scholar 

  32. T. Q. T. Le and J. Murakami, “Representations of the category of tangles by Kontsevich's iterated integral,” Commun. Math. Phys., 168, 535–562 (1995).

    Article  MathSciNet  Google Scholar 

  33. T. Q. T. Le and J. Murakami, “The universal Vassiliev-Kontsevich invariant for framed oriented links,” Comp. Math., 102, 41–64 (1996).

    MathSciNet  Google Scholar 

  34. T. Q. T. Le and J. Murakami, “Kontsevich's integral for the Kauffman polynomial,” Nagoya Math. J., 142, 39–65 (1996).

    MathSciNet  Google Scholar 

  35. S. V. Matveev, “Classification of ‘sufficiently large’ three-dimensional manifolds,” Usp. Mat. Nauk, 52, No.5, 147–174 ().

  36. S. V. Matveev and A. T. Fomenko, Algorithmic and Computer Methods in Three-Dimensional Topology [in Russian], Nauka, Moscow (1998).

    Google Scholar 

  37. W. Menasco and M. Thistlethwaite, “A classification of alternating links,” Ann. Math., 138, 113–171 (1993).

    MathSciNet  Google Scholar 

  38. K. Murasugi, “Jones polynomial and classical conjectures in knot theory,” Topology, 26, 184–194 (1987).

    Article  MathSciNet  Google Scholar 

  39. O.-P. Ostlund, “Invariants of knot diagrams and relations among Reidemeister moves,” J. Knot Theory Ramifications, 10, No.8, 1215–1227 (2001).

    MathSciNet  Google Scholar 

  40. M. Polyak, O. Viro, “Gauss diagram formulas for Vassiliev invariants,” Int. Math. Res. Not., 11, 445–453 (1994).

    MathSciNet  Google Scholar 

  41. M. Polyak, “On Milnor's triple linking number,” C. R. Acad. Sci. Paris, Ser. I, 325, 77–82 (1997).

    MATH  MathSciNet  Google Scholar 

  42. V. V. Prasolov and A. B. Sossinsky, Knots, Links, Braids, and Three-Dimensional Manifolds [in Russian], Moscow (1997).

  43. S. Piunikhin, “Combinatorial expression for universal Vassiliev link invariants,” Commun. Math. Phys., 168, 1–22 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  44. S. Piunikhin, “Weights of Feynman diagrams, links polynomials, and Vassiliev knot invariants,” J. Knot Theory Ramifications, 4, No.1, 163–188 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  45. V. V. Prasolov, “Seifert surfaces,” Mat. Prosveshchenie, Ser. 3, 3, 116–126 (1999).

    Google Scholar 

  46. M. Thistlethwaite, “A spanning tree expansion for the Jones polynomial,” Topology, 26, 297–309 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  47. H. F. Trotter, “Non-invertible knots exist,” Topology, 2, 275–280 (1964).

    MathSciNet  Google Scholar 

  48. S. D. Tyurina, “On formulas of the type of Lannes and Viro-Polyak for Vassiliev's invariants,” in: Proc. Int. Conf. Dedic. to the 70th Anniv. of L. S. Pontryagin [in Russian], Moscow State Univ., Moscow (1998), pp. 329–330.

    Google Scholar 

  49. S. D. Tyurina, “Explicit formulas for finite-degree invariants,” in: Proc. Int. Conf. “Monodromie et equations differentielles en theorie des singularites et des representations de groupes,” Luminy, France, CNRS-SMF (1999).

    Google Scholar 

  50. S. D. Tyurina, “On formulas of Lannes and Viro-Polyak type for knot invariants of finite order,” Mat. Zametki, 66, No.4 (1999).

    Google Scholar 

  51. S. D. Tyurina, “Diagrammatic formulae of Viro-Polyak type for knot invariants of finite order,” Russ. Math. Surv., 54, No.3, 658–659 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  52. V. Vassiliev, “Topology of complements to discriminants and loop spaces,” Theory of Singularities and Applications, Adv. Sov. Math., 1, 9–21 (1990).

  53. V. Vassiliev, “Cohomology of knot spaces,” in; Theory of Singularities and Applications, Adv. Soviet Math., 1, 23–69 (1990).

  54. V. Vassiliev, Topology of Complements to Discriminants [in Russian], Moscow (1997).

  55. O. Viro, First-degree invariants of generic curves on surfaces, Preprint, Uppsala University (1994).

  56. W. Whitten, “Knot complements and groups,” Topology, 26, 41–44 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  57. S. Willerton, “Vassiliev invariants and Hopf algebra of chord diagrams,” Math. Proc. Camb. Phil. Soc., 119, 55–65 (1996).

    MATH  MathSciNet  Google Scholar 

  58. S. Willerton, “A combinatorial half-integration from weight systems to Vassiliev knot invariants,” J. Knot Theory Ramifications, 7, No.4, 519–526 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  59. S. Willerton, Vassiliev Invariants as Polynomials, Banach Center Publ., 42, Warszawa (1998).

  60. E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys., 121, 351–399 (1989).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 19, Topology and Noncommutative Geometry, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyurina, S.D. Diagram Invariants of Knots and the Kontsevich Integral. J Math Sci 134, 2017–2071 (2006). https://doi.org/10.1007/s10958-006-0095-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0095-9

Keywords

Navigation