Skip to main content
Log in

Representation of the category of tangles by Kontsevich's iterated integral

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Applying Kontsevich's iterated integral for tangles, we get an isotopy invariant of tangles. We give a method to compute the integral of a tangle combinatorially from modified integrals of some simple tangles. We localize the integral by moving the end points of the tangle to an extreme configuration, and modify the integral so that it is convergent. By using a similar technique, we generalize Kontsevich's invariant to a framed tangle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutsu, Y., Deguchi, T., Wadati, M.: Exactly solvable models and new link polynomials III. J. Phys. Soc. of Japan57, 757–776 (1988)

    Google Scholar 

  2. Altschuler, D., Coste, A.: Quasi-quantum groups, knots, three-manifolds, and topological field theory. Commun. Math. Phys.150, 83–107 (1992)

    Google Scholar 

  3. Altschuler, D., Freidel, L.: On universal Vassiliev invariants, preprint, ENSLAPP-L 455/94, February 1994

  4. Arnold, V.I.: The First European Congress of Mathematics, Paris July 1992. Basel: Birkhauser, 1993

    Google Scholar 

  5. Dror Bar-Natan,: On the Vassiliev knot invariants. Harvard preprint, August 1992

  6. Dror Bar-Natan,: Non-Associative tangles. Harvard preprint, December 1993

  7. Birman, J.S., Lin, X.S.: Knot polynomials and Vassiliev's invariants. Invent. Math.111, 225–270 (1993)

    Google Scholar 

  8. Drinfel'd, V.G.: On Quasi-Hopf algebras. Leningrad Math. J.1, 1419–1457 (1990)

    Google Scholar 

  9. Drinfel'd, V.G.: On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(ℚ/ℚ). Leningrad Math. J.2, 829–860 (1990)

    Google Scholar 

  10. Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and Towers of Algebras. New York: Springer Berlin, Heidelberg, 1989

    Google Scholar 

  11. Hoefsmit, P.N.: Representations of Hecke algebras of finite groups with BN-paris of classical type. Thesis, the University of British Columbia

  12. Kauffman, L.H.: State models and the Jones polynomial. Topology26, 395–407 (1987)

    Google Scholar 

  13. Kirby, R., Melvin, P.: The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2,C). Invent. Math.105, 473–545 (1991)

    Google Scholar 

  14. Kobayashi, T., Murakami, H., Murakami, J.: Cyclotomic invariants for links. Proc. Japan Acad. Ser. A64, 235–238 (1988)

    Google Scholar 

  15. Kohno, T.: Hecke algebra representations of braid groups and classical Yang-Baxter equations. In: Conformal field theory and solvable lattice models (Kyoto, 1986), Adv. Stud. Pure Math.16, pp. 255–269

    Google Scholar 

  16. Kontsevich, M.: Vassiliev's knot invariants. Max-Planck-Institut für Mathematik, Bonn, preprint

  17. Kuperberg, G.: The quantum G2 link invariant. Univ. of California at Berkeley, preprint August 1990

  18. Le, T.Q.T., Murakami, J.: Kontsevich integral for the Homfly polynomial and relations of the multiple zeta values to appear in Top Appl.

  19. Le, T.Q.T., Murakami, J.: Kontsevich integral for the Kauffman polynomial. Max-Planck-Institut für Mathematik, Bonn preprint

  20. Murakami, J.: The parallel version of polynomial invariants of links. Osaka J. Math.26, 1–55 (1989)

    Google Scholar 

  21. Reshetikhin, N.Yu.: Quasitriangular Hopf algebras and invariants of tangles. Leningrad J. Math.1, 491–513 (1990)

    Google Scholar 

  22. Reshetikhin, N.Yu., Turaev, T.G.: Ribbon graphs and their invariants derived from quantum groups. Commun Math. Phys.127, 262–288 (1990)

    Google Scholar 

  23. Turaev, T.G.: The Yang-Baxter equation and invariants of links. Invent. Math.92, 527–553 (1988)

    Google Scholar 

  24. Turaev, T.G.: Operator invariants of tangles and R-Matrices. Math. USSR Izvestiya35, 411–444 (1990)

    Google Scholar 

  25. Vassiliev, V.A.: Cohomology of knot spaces. In: Theory of Singularities and Its Applications. V.I. Arnold (ed.) Advances in Soviet Mathematics, AMS1, 23–69 (1990)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, T.Q.T., Murakami, J. Representation of the category of tangles by Kontsevich's iterated integral. Commun.Math. Phys. 168, 535–562 (1995). https://doi.org/10.1007/BF02101842

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101842

Keywords

Navigation