Skip to main content
Log in

Analytic Fourier Transforms and Exponential Approximations. II

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  2. K. I. Babenko, “On a new quasi-analyticity problem and the Fourier transform of entire functions,” Trudy Mosk. Mat. Obshch., 5, 523–542 (1956).

    Google Scholar 

  3. K. I. Babenko, “On certain classes of spaces of infinitely differentiable functions,” Dokl. Akad. Nauk SSSR, 132, No.6, 1231–1234 (1960).

    Google Scholar 

  4. E. Beller, “Zeros of A p functions and related classes of analytic functions,” Israel J. Math., 22, 68–80 (1975).

    Google Scholar 

  5. R. P. Boas, Entire Functions, Academic Press, New York (1954).

    Google Scholar 

  6. P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York (1995).

    Google Scholar 

  7. E. Copson, Asymptotic Expansions [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  8. G. G. Devdariani, “On the basis property of a certain trigonometric function system,” Differ. Uravn., 22, No.1, 168–170 (1986).

    Google Scholar 

  9. G. G. Devdariani, “On the basis property of a certain function system,” Differ. Uravn., 22, No.1, 170–171 (1986).

    Google Scholar 

  10. G. G. Devdariani, “Basis property of certain systems of eigenfunctions for non-self-adjoint differential operators,” Thesis [in Russian], NGU, Moscow (1986).

    Google Scholar 

  11. R. J. Duffin and A. C. Schaeffer, “A class of nonharmonic Fourier series,” Trans. Amer. Math. Soc., 72, 341–366 (1955).

    Google Scholar 

  12. P. L. Duren, Theory of H p Spaces, Academic Press, New York (1970).

    Google Scholar 

  13. M. M. Dzhbashyan, “On the problem of representation of analytic functions,” Soobshch. Inst. Mat. Mekh. Akad. Nauk ArmSSR, 2, 3–40 (1984).

    Google Scholar 

  14. M. M. Dzhbashyan, “Uniqueness theorems for Fourier transforms and infinitely differentiable functions, ” Izv. Akad. Nauk ArmSSR, 10, No.6, 7–23 (1957).

    Google Scholar 

  15. M. M. Dzhbashyan, Integral Transforms and Representations of Function in a Complex Domain [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  16. R. E. Edwards, “The translates and affine transforms of some special functions,” J. London Math. Soc., 27, 160–175 (1952).

    Google Scholar 

  17. R. E. Edwards, “Approximation theorems for translates,” Proc. London Math. Soc., 35, 321–342 (1959).

    Google Scholar 

  18. R. E. Edwards, Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York (1965).

    Google Scholar 

  19. M. A. Evgrafov, A symptotic Estimates and Entire Functions [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  20. B. Faxen, “On approximation by translates and related problems in function theory,” Ark. Math., 19, 271–289 (1981).

    Google Scholar 

  21. M. V. Fedoryuk, Saddle-Point Method [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  22. G. M. Fikhtengol'ts, Course of Differential and Integral Calculus [in Russian], Vol. 2, Nauka, Moscow (1966).

    Google Scholar 

  23. T. Ganelius, “Some approximation theorems related to Wiener's,” In: Proc. Conf. Constr. Th. Functions, Budapest, 1969, Akademiai Kiado, Budapest (1972), pp. 173–181.

    Google Scholar 

  24. J. Garnett, Bounded Analytic Functions [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  25. I. M. Gel'fand and G. E. Shilov, “Fourier transform of rapidly increasing functions and uniqueness problems for a solution of the Cauchy problem,” Usp. Mat. Nauk, 8, No.3, 3–54 (1953).

    Google Scholar 

  26. M. Golitschek, “A short proof of Muntz's theorem,” J. Approxim. Theory, 39, 394–395 (1983).

    Article  Google Scholar 

  27. V. D. Golovin, “On biorthogonal expansions in L 2 in linear combinations of exponential functions, ” Zap. Mekh.-Mat. Fak. KhGU i KhMO, Ser. 4. 30, 18–29 (1964).

    Google Scholar 

  28. G. M. Goluzin, Geometric Theory of Functions of One Complex Variable [in Russian], Nauka, Moskow (1966).

    Google Scholar 

  29. M. Grum, “On the theorems of Muntz and Szasz,” J. London Math. Soc., 31, 433–437 (1956).

    Google Scholar 

  30. M. Grum, “On the theorems of Muntz and Szasz, Corrigendum and Addendum,” J. London Math. Soc., 32, 517 (1957).

    Google Scholar 

  31. G. H. Hardy, “A theorem concerning Fourier transforms,” J. London Math. Soc., 8, 227–231 (1933).

    Google Scholar 

  32. G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals, I,” Math. Z., 27, 565–606 (1928).

    Article  MathSciNet  Google Scholar 

  33. C. Horowitz, “Zeros of functions in the Bergman spaces,” Duke Math. J., 41, 693–710 (1974).

    Article  Google Scholar 

  34. S. V. Hruscev, N. K. Nikolskii, and B. S. Pavlov, “Unconditional bases of exponentials and reproducing kernels,” Lect. Notes Math., 864, 214–335 (1981).

    Google Scholar 

  35. R. A. Hunt, B. Muckenhoupt, and R. L. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform,” Trans. Amer. Math. Soc., 176, 227–251 (1973).

    Google Scholar 

  36. V. A. Il'in, “Necessary and sufficient condition for the basis property in L p and for the equiconvergence with a trigonometric series of spectral expansions in an exponential system,” Dokl. Akad. Nauk SSSR, 273, No. 4, 789–793 (1983).

    Google Scholar 

  37. M. I. Kadets, “Exact value of the Paley-Wiener constant,” Dokl. Akad. Nauk SSSR, 155, 1253–1254 (1964).

    Google Scholar 

  38. S. V. Khrushchev, “Perturbation theorems and the Muckenhoupt condition,” Dokl. Akad. Nauk SSSR, 247, 44–48 (1979).

    Google Scholar 

  39. P. Koosis, Introduction to H p Spaces, Cambridge Univ. Press, Cambridge (1980).

    Google Scholar 

  40. B. Korenblum, “An extension of the Nevanlinna theory,” Acta Math., 135, Nos. 3–4, 187–219 (1975).

    Google Scholar 

  41. V. I. Ladygin, “Stability of completeness of exponential systems on a half-line,” Tr. MEI, 290, 88–95 (1976).

    Google Scholar 

  42. V. I. Ladygin, “On the Muntz-Szasz problem,” Mat. Zametki, 23, No. 1, 91–103 (1078).

    Google Scholar 

  43. H. J. Landau, “On the completeness of a set of translates,” J. Approxim. Theory, 5, 438–440 (1972).

    Article  Google Scholar 

  44. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of One Complex Variable [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  45. L. A. Leont'eva, “On the completeness of a certain function system on a closed interval,” Mat. Zametki, 4, No.5, 557–565 (1968).

    Google Scholar 

  46. B. Ya. Levin, Distribution of Roots of Entire Functions [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  47. B. Ya. Levin, “On bases of exponential functions in L 2,” Zap. Mat. Otd. Fiz.-Mat. Fak. KhGU KhMO, Ser. 4, 27, 39–48 (1961).

    Google Scholar 

  48. B. Ya. Levin, “Interpolation by entire functions of exponential type,” In: Mathematical Physics and Functional Analysis [in Russian], FTINT Akad. Nauk UkrSSR, 1 (1969), pp. 136–146.

  49. N. Levinson, Gap and Density Theorems, Amer. Math. Soc., New York (1940).

    Google Scholar 

  50. N. Levinson, “On the Szasz-Muntz theorem,” J. Math. Anal. Appl., 48, 264–269 (1974).

    Article  Google Scholar 

  51. Yu. I. Lyubarskii and K. Seip, “Weighted Paley-Wiener spaces,” J. Amer. Math. Soc., 15, 979–1006 (2002).

    Article  Google Scholar 

  52. S. Mandelbrojt, Dirichlet Series. Principles and Methods, D. Reidel Publ., Dordrecht (1972).

    Google Scholar 

  53. A. I. Markushevich, Theory of Analytic Functions [in Russian], Vol. 1, Nauka, Moscow (1968).

    Google Scholar 

  54. V. I. Matsaev and M. Z. Solomyak, “On existence conditions for the Stieltjes integral,” Mat. Sb., 88, No.4, 522–535 (1972).

    Google Scholar 

  55. A. M. Minkin, “Reflection of exponents and unconditional exponential bases,” Algebra Anal., 3, No.5, 109–134. (1991).

    Google Scholar 

  56. E. I. Moiseev, On the base property for systems of sines and cosines, Dokl. Akad. Nauk SSSR, 275, 794–798 (1984).

    Google Scholar 

  57. V. A. Molodenkov and A. P. Khromov, “Eigenfunction expansions for a certain boundary-value problem for the differentiation operator,” In: Differential Equations and Computational Mathematics [in Russian], 1, SGU (1972), pp. 17–26.

    Google Scholar 

  58. G. W. Morgan, “A note on Fourier transforms,” J. London Math. Soc., 9, 187–192 (1934).

    Google Scholar 

  59. C. H. Muntz, “Uber den Approximationssatz von Weierstrass,” In: H. A. Schwartz Festschrift, Berlin (1914), pp. 303–312.

  60. A. Nagel, W. Rudin, and J. H. Shapiro, “Tangential boundary behavior of function in Dirichlet-spaces, ” Ann. Math., 116, 331–360 (1982).

    Google Scholar 

  61. T. E. Olson and R. A. Zalik, “Nonexistence of a Riesz basis of translates,” In: Approximation Theory, Proc. 6 Southeastern Approxim. Th. Annual Conf., Marcel Dekker, New York (1992). pp. 401–408.

    Google Scholar 

  62. F. W. Olver, Asymptotics and Special Functions, Academic Press, New York (1978).

    Google Scholar 

  63. R. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York (1934).

    Google Scholar 

  64. B. S. Pavlov, “Base property of an exponential system and the Muckenhoupt condition,” Dokl. Akad. Nauk SSSR, 247, 37–40 (1979).

    Google Scholar 

  65. S. M. Ponomarev, “On a certain eigenvalue problem,” Dokl. Akad. Nauk SSSR, 249, 2068–2070 (1979).

    Google Scholar 

  66. I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], GITL, Moscow (1950).

    Google Scholar 

  67. R. Redheffer and R. M. Young, “Completeness and basis properties of complex exponentials,” Trans. Amer. Math. Soc., 277, 93–111 (1983).

    Google Scholar 

  68. D. L. Russel, “Nonharmonic Fourier series in the control theory of distributed parameter systems,” J. Math. Anal. Appl., 18, 542–560 (1967).

    Article  Google Scholar 

  69. V. G. Ryabykh, “Zero distribution of functions of class A p ,” In: Mathematical Analysis and Its Application [in Russian], RGU (1983), pp. 89–98.

  70. T. A. Sal'nikova, “Complete and minimal exponential systems in L p (ℝ) spaces, Mat. Zametki, 55, No.3, 118–129 (1994).

    Google Scholar 

  71. T. A. Sal'nikova, “Complete and minimal expionential systems in Lebesgue spaces on the real axis,” Thesis [in Russian], RUDN, Moscow (1995).

    Google Scholar 

  72. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Series of Fractional Order [in Russian], Nauka i Tekhnika, Minsk (1987).

    Google Scholar 

  73. L. Schwartz, Etude des Sommes d'Exponentielles Reelles, Hermann, Paris (1943).

    Google Scholar 

  74. A. M. Sedletskii, “Complete and uniformly minimal systems of exponential functions in L p(− π, π),” Tr. MEI, 146, 167–174 (1972).

    Google Scholar 

  75. A. M. Sedletskii, “On the Muntz-Szasz problem for the space C[0, 1],” Tr. MEI, 260, 89–98 (1975).

    Google Scholar 

  76. A. M. Sedletskii, “Equivalent definition of H p spaces and some applications,” Mat. Sb., 96, No.1, 75–82 (1975).

    Google Scholar 

  77. A. M. Sedletskii, “On the completeness of exponential systems in spaces of differentiable functions, ” Tr. MEI, 334, 98–103 (1977).

    Google Scholar 

  78. A. M. Sedletskii, “Biorthoganal exponential series expansions on intervals of the real line,” Usp. Mat. Nauk, 57, No.5, 51–95 (1982).

    Google Scholar 

  79. A. M. Sedletskii, “Exponential bases in L p spaces,” Anal. Math., 8, 215–232 (1982).

    Google Scholar 

  80. A. M. Sedletskii, “Approximation by shifts and completeness of weighted exponential systems in L 2(ℝ). Mat. Sb., 123, No.1, 92–107 (1984).

    Google Scholar 

  81. A. M. Sedletskii, “On the Muntz-Szasz problem,” Mat. Zametki, 39, No.1, 97–107 (1986).

    Google Scholar 

  82. A. M. Sedletskii, “Muntz-Szasz problem and zeros of analytic functions,” In: Theory of Functions and Approximation, Proc. 3rd Saratov Winter Mathematical School [in Russian], SGU (1987), pp. 59–63.

  83. A. M. Sedletskii, “On zeros of analytic functions of class A pα ,” In: Actual Problems in Function Theory [in Russian], RGU (1987), pp. 24–29.

  84. A. M. Sedletskii, “Approximation by shifts of a function on the line,” In: Trudy International Conference on Function Approximation, Kiev, 1983 [in Russian]. Nauka, Moscow (1987), pp. 397–400.

    Google Scholar 

  85. A. M. Sedletskii, “On completeness of exponential systems on a half-ine,” Mat. Zametki, 40, No.5, 88–96 (1990).

    Google Scholar 

  86. A. M. Sedletskii, “Nonharmonic Fourier series,” In: Theory of Functions and Approximation, Proceedings of 4th Saratov Winter Mathematical School [in Russian], SGU (1990), pp. 92–98.

  87. A. M. Sedletskii, “On the uniform convergence of nonharmonic Fourier series,” Trudy Mat. Inst. Ross. Akad. Nauk, 200, 299–309 (1991)

    Google Scholar 

  88. A. M. Sedletskii, “Eigenvalue expansions of the differentiation operator with fuzzy boundary condition, ” Differ. Uravn., 30, No.1, 70–76 (1994).

    Google Scholar 

  89. A. M. Sedletskii, “Asymptotic formulas for zeros of a Mittag-Leffler-type function,” Anal. Math., 20, 117–132 (1994).

    Article  Google Scholar 

  90. A. M. Sedletskii, “Theorems of Paley-Wiener-Pitt's type for Fourier transforms of rapidly decreasing functions,” Integral Transform. Spec. Funct., 2, 153–164 (1994).

    Google Scholar 

  91. A. M. Sedletskii, “Approximation properties of exponential systems in L p(a, b),” Differ. Uravn., 31, No.10, 1639–1645 (1995).

    Google Scholar 

  92. A. M. Sedletskii, “Fourier transform of rapidly decreasing functions,” Izv. Ross. Akad. Nauk, Ser. Mat., 61, No.3, 187–202 (1997).

    Google Scholar 

  93. A. M. Sedletskii, “Approximation properties of exponential systems on a line and a half-line, Mat. Sb., 189, No3, 125–140 (1998).

    Google Scholar 

  94. A. M. Sedletskii, “Bases occuring in solving mixed-type equations,” Differ. Uravn., 35, No.4, 507–515 (1999).

    Google Scholar 

  95. A. M. Sedletskii, “Approximate properties of exponential systems in Sobolev spaces,” Moscow Univ. Math. Bull., No. 6, 3–8 (1999).

  96. A. M. Sedletskii, “On the summability and convergence of nonharmonic Fourier series,” Izv. Ross. Akad. Nauk, Ser. Mat., 64, No.3, 151–168 (2000).

    Google Scholar 

  97. A. M. Sedletskii, Fourier Transforms and Approximations, Gordon & Breach, Amsterdam (2000).

    Google Scholar 

  98. A. M. Sedletskii, “A necessary uniform minimality condition of an exponential system in L p spaces on the line,” Mat. Sb., 192, No.11, 137–156 (2001).

    Google Scholar 

  99. A. M. Sedletskii, “Spectral analysis of differentiation operators,” In: Spectral and Evolution Problems, Proc. 11th Crimean Autumn Math. School-Symp., September 2000, Sevastopol, Laspi [in Russian], Simpheropol (2001), pp. 8–18.

  100. A. M. Sedletskii, “Exponential bases in L p(−π, π) spaces,” Mat. Zametki, 72, No.3, 418–432 (2002).

    Google Scholar 

  101. A. M. Sedletskii, “Approximation by exponentials on a line and half-line,” Anal. Math., 28, 43–60 (2002).

    Article  Google Scholar 

  102. A. M. Sedletskii, “Tangential boundary values of Laplace transforms. Application to the Muntz-Szasz-type apprximation,” Izv. Ross. Akad. Nauk, Ser. Mat., 67, No.1, 177–198 (2003).

    Google Scholar 

  103. H. S. Shapiro and A. L. Shields, “On the zeros of functions with finite Dirichlet integral and some related function spaces,” Math. Z., 80, 217–229 (1962).

    Article  Google Scholar 

  104. O. V. Shapoval'skii, “Some properties of Dirichlet series and exponential series with complex exponents, ” Thesis [in Ukrainian], Drogobych (1994).

  105. A. A. Shkalikov, “On properties of a part of eigenvectors and associated vectors of self-adjoint quadratic pencils and operators,” Dokl. Akad. Nauk SSSR, 283, 1100–1106 (1985).

    Google Scholar 

  106. A. Siegel, “On the Muntz-Szasz theorem for C[0, 1],” Proc. Amer. Math. Soc., 36, 161–166 (1972).

    Google Scholar 

  107. I. Stein, Singular Integrals and Differentiability Properties of Functions [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  108. O. Szasz, “Uber die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen,” Math. Ann., 77, 482–496 (1916).

    Article  MathSciNet  Google Scholar 

  109. B. A. Taylor, and D. L. Williams, “Zeros of Lipschitz functions analytic in the unit disc,” Michigan Math. J., 18, 129–139 (1971).

    Article  Google Scholar 

  110. E. C. Titchmarsh, Introduction to the Fourier Integral Theory [Russian translation], Gostekhizgat, Moscow (1948).

    Google Scholar 

  111. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York (1986).

    Google Scholar 

  112. N. Wiener, The Fourier Integral and Certain of Its Applications, Cambridge Univ. Press, Cambridge (1933).

    Google Scholar 

  113. R. M. Young, An introduction to Nonharmonic Fourier Series, Academic Press, New York (1980).

    Google Scholar 

  114. R. A. Zalik, “On approximation by shifts and a theorem of Wiener,” Trans. Amer. Math. Soc., 243, 299–308 (1978).

    Google Scholar 

  115. R. A. Zalik, “On some gap theorems and the closure of translates,” Notic. Amer. Math. Soc., 25, A–314 (1978).

    Google Scholar 

  116. R. A. Zalik, “The Muntz-Szasz theorem and the closure of translates,” J. Math. Anal. Appl., 82, 361–369 (1981).

    Article  Google Scholar 

  117. R. A. Zalik, “Remarks on a paper of Gel'fand and Silov on Fourier transforms,” J. Math. Anal. Appl., 102, 102–112 (1984).

    Article  Google Scholar 

  118. R. A. Zalik and Saad T. Abuabara, “Some theorems concerning holomorphic Fourier transforms,” J. Math. Anal. Appl., 126, 483–493 (1987).

    Article  Google Scholar 

  119. A. Zygmund, Trigonometric Series, Vols. 1, 2, Cambridge Univ. Press (1959).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika. Fundamental'nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 6, Functional Analysis, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedletskii, A.M. Analytic Fourier Transforms and Exponential Approximations. II. J Math Sci 130, 5083–5255 (2005). https://doi.org/10.1007/s10958-005-0397-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0397-3

Keywords

Navigation