Skip to main content
Log in

Control Problems for the Navier–Stokes System with Nonlocal Spatial Terms

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the local null controllability of a modified Navier–Stokes system where we include nonlocal spatial terms. We generalize a previous work where the nonlocal spatial term is given by the linearization of a Ladyzhenskaya model for a viscous incompressible fluid. Here, the nonlocal spatial term is more general and we consider a control with one vanishing component. The proof of the result is based on a Carleman estimate where the main difficulty consists in handling the nonlocal spatial terms. One key point corresponds to a particular decomposition of the solution of the adjoint system that allows us to overcome regularity issues. With a similar approach, we also show the existence of insensitizing controls for the same system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bárcena-Petisco, J.A., Guerrero, S., Pazoto, A.F.: Local null controllability of a model system for strong interaction between internal solitary waves. Commun. Contemp. Math. 24(2), 30 (2022)

    Article  MathSciNet  Google Scholar 

  2. Biccari, U., Hernández-Santamaría, V.: Null controllability of linear and semilinear nonlocal heat equations with an additive integral kernel. SIAM J. Control. Optim. 57(4), 2924–2938 (2019)

    Article  MathSciNet  Google Scholar 

  3. Carreño, N.: Local controllability of the \(N\)-dimensional Boussinesq system with \(N-1\) scalar controls in an arbitrary control domain. Math. Control Relat. Fields 2(4), 361–382 (2012)

    Article  MathSciNet  Google Scholar 

  4. Carreño, N., Guerrero, S.: Local null controllability of the \(N\)-dimensional Navier-Stokes system with \(N-1\) scalar controls in an arbitrary control domain. J. Math. Fluid Mech. 15(1), 139–153 (2013)

    Article  MathSciNet  Google Scholar 

  5. Carreño, N., Guerrero, S., Gueye, M.: Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system. ESAIM Control Optim. Calc. Var. 21(1), 73–100 (2015)

    Article  MathSciNet  Google Scholar 

  6. Carreño, N.: Gueye, Mamadou: Insensitizing controls with one vanishing component for the Navier-Stokes system. J. Math. Pures Appl. 101(1), 27–53 (2014)

    Article  MathSciNet  Google Scholar 

  7. Coron, J.-M., Guerrero, S.: Null controllability of the \(N\)-dimensional Stokes system with \(N-1\) scalar controls. J. Differ. Equ. 246(7), 2908–2921 (2009)

    Article  MathSciNet  Google Scholar 

  8. Coron, J.-M., Lissy, P.: Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components. Invent. Math. 198(3), 833–880 (2014)

    Article  MathSciNet  Google Scholar 

  9. De Teresa, L., Zuazua, E.: Identification of the class of initial data for the insensitizing control of the heat equation. Commun. Pure Appl. Anal. 8(1), 457–471 (2009)

    Article  MathSciNet  Google Scholar 

  10. Duprez, M., Lissy, P.: Positive and negative results on the internal controllability of parabolic equations coupled by zero- and first-order terms. J. Evol. Equ. 18(2), 659–680 (2018)

    Article  MathSciNet  Google Scholar 

  11. Fernández-Cara, E., González-Burgos, M., Guerrero, S., Puel, J.-P.: Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM Control Optim. Calc. Var. 12(3), 442–465 (2006)

    Article  MathSciNet  Google Scholar 

  12. Fernández-Cara, E., Guerrero, S.: Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control. Optim. 45(4), 1399–1446 (2006)

    Article  MathSciNet  Google Scholar 

  13. Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83(12), 1501–1542 (2004)

    Article  MathSciNet  Google Scholar 

  14. Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Some controllability results for the \(N\)-dimensional Navier-Stokes and Boussinesq systems with \(N-1\) scalar controls. SIAM J. Control. Optim. 45(1), 146–173 (2006)

    Article  MathSciNet  Google Scholar 

  15. Fernández-Cara, E., Límaco, J., Nina-Huaman, D., Núñez Chávez, M.R.: Exact controllability to the trajectories for parabolic PDEs with nonlocal nonlinearities. Math. Control Signals Syst. 31(3), 415–431 (2019)

    Article  MathSciNet  Google Scholar 

  16. Fernández-Cara, E., Lü, Q., Zuazua, E.: Null controllability of linear heat and wave equations with nonlocal spatial terms. SIAM J. Control. Optim. 54(4), 2009–2019 (2016)

    Article  MathSciNet  Google Scholar 

  17. Fursikov, A., Imanuvilov, O.Y.: Controllability of Evolution Equations. volume 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, (1996)

  18. Guerrero, S., Takahashi, T.: Controllability to trajectories of a Ladyzhenskaya model for a viscous incompressible fluid. C. R. Math. Acad. Sci. Paris 359, 719–732 (2021)

    MathSciNet  Google Scholar 

  19. Hernández-Santamaría, V., Le Balc’h, K.: Local controllability of the one-dimensional nonlocal Gray-Scott model with moving controls. J. Evol. Equ. 21(4), 4539–4574 (2021)

    Article  MathSciNet  Google Scholar 

  20. Hernández-Santamaría, V., Le Balc’h, K.: Local null-controllability of a nonlocal semilinear heat equation. Appl. Math. Optim. 84(2), 1435–1483 (2021)

    Article  MathSciNet  Google Scholar 

  21. Ladyženskaja, O.A.: New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Trudy Mat. Inst. Steklov. 102, 85–104 (1967)

    MathSciNet  Google Scholar 

  22. Límaco, J., Nuñez, C., Miguel, R., Huaman, D.N.: Exact controllability for nonlocal and nonlinear hyperbolic PDEs. Nonlinear Anal. 214, 24 (2022)

    Article  MathSciNet  Google Scholar 

  23. Lissy, P., Zuazua, E.: Internal controllability for parabolic systems involving analytic non-local terms. Chin. Ann. Math. Ser. B 39(2), 281–296 (2018)

    Article  MathSciNet  Google Scholar 

  24. Micu, S., Takahashi, T.: Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity. J. Differ. Equ. 264(5), 3664–3703 (2018)

    Article  MathSciNet  Google Scholar 

  25. Temam, R.: Navier-Stokes equations. Theory and Numerical Analysis (1979)

  26. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2009)

  27. Zhou, X.: Integral-type approximate controllability of linear parabolic integro-differential equations. Syst. Control Lett. 105, 44–47 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author (N. Carreño) has been funded by ANID FONDECYT 1211292. The second author (T. Takahashi) was partially supported by the Agence Nationale de la Recherche, Project TRECOS (ANR-20-CE40-0009). Both authors were partially supported by the MATH-AmSud project ACIPDE (MATH190008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takéo Takahashi.

Additional information

Communicated by Yannick Privat.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Proposition 2.1

A Proof of Proposition 2.1

We give here a sketch of the proof of Proposition 2.1 that is quite standard. The proof of Proposition 2.2 can be obtained with a similar method.

Proof of Proposition 2.1

The proof of Proposition 2.1 can be obtained by using the standard Galerkin method and by following for instance the proof of [25, Proposition 1.2, pp. 267–268] for the Stokes system. The main idea is to obtain uniform a priori estimates for the approximate solutions. Here, to simplify, we only show a priori estimates on the solutions of (2.2), but one can recover similar estimates for the Galerkin approximation.

First, by multiplying the first equation of (2.3) by \(\varphi \) and integrating in \((t,T)\times \Omega \), we obtain that for \(t\in (0,T)\)

$$\begin{aligned}{} & {} \int _{\Omega } \left| \varphi (t,x)\right| ^2 \ \textrm{d}x + 2\int _t^T\int _{\Omega } \left| \nabla \varphi \right| ^2 \ \textrm{d}x \, \textrm{d}s \leqslant \int _{\Omega } \left| \varphi _T\right| ^2 \ \textrm{d}x + \int _0^T\int _{\Omega } \left| g\right| ^2 \ \textrm{d}x \, \textrm{d}s \\{} & {} \quad + \left( 1+\sum _{i=1}^n \left\| a^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))} \left\| b^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))}\right) \int _t^T\int _{\Omega } \left| \varphi \right| ^2 \ \textrm{d}x \, \textrm{d}s \end{aligned}$$

and with the Grönwall lemma, this yields that for \(t\in (0,T)\)

$$\begin{aligned} \int _{\Omega } \left| \varphi (t,x)\right| ^2 \ \textrm{d}x + 2\int _t^T\int _{\Omega } \left| \nabla \varphi \right| ^2 \ \textrm{d}x \, \textrm{d}s \lesssim \int _{\Omega } \left| \varphi _T\right| ^2 \ \textrm{d}x + \int _0^T\int _{\Omega } \left| g\right| ^2 \ \textrm{d}x \, \textrm{d}s, \end{aligned}$$

where the constant of the above inequality depends on T and on the norms of \(a^{(i)}\) and \(b^{(i)}\) in \(H^2(0,T;L^2(\Omega ))\). With the Poincaré inequality, we thus deduce that,

$$\begin{aligned} \left\| \varphi \right\| _{L^\infty (0,T;L^2(\Omega ))} + \left\| \varphi \right\| _{L^2(0,T;H^1(\Omega ))} \lesssim \left\| \varphi _T \right\| _{L^2(\Omega )} + \left\| g \right\| _{L^2(0,T;L^2(\Omega ))}. \end{aligned}$$
(A.1)

Second, by multiplying the first equation of (2.3) by \(-\partial _t \varphi \) and integrating in \((t,T)\times \Omega \), we obtain that for \(t\in (0,T)\)

$$\begin{aligned}{} & {} \int _t^T\int _{\Omega } \left| \partial _t \varphi \right| ^2 \ \textrm{d}x \, \textrm{d}s+\frac{1}{2}\int _{\Omega } \left| \nabla \varphi (t,x)\right| ^2 \ \textrm{d}x \leqslant \frac{1}{2}\int _{\Omega } \left| \nabla \varphi _T\right| ^2 \ \textrm{d}x+\int _0^T\int _{\Omega } \left| g\right| ^2 \ \textrm{d}x \, \textrm{d}s\\{} & {} \quad +\int _t^T \sum _{i=1}^n \left\| a^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))}^2 \left\| b^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))}^2 \left\| \varphi (s,\cdot ) \right\| _{L^2(\Omega )}^2 \, \textrm{d}s \end{aligned}$$

and combining the above relation with (A.1) implies

$$\begin{aligned} \left\| \varphi \right\| _{H^1(0,T;L^2(\Omega ))} +\left\| \varphi \right\| _{L^\infty (0,T;H^1(\Omega ))} \lesssim \left\| \varphi _T \right\| _{H^1(\Omega )} + \left\| g \right\| _{L^2(0,T;L^2(\Omega ))}. \end{aligned}$$
(A.2)

Then, we can see (2.3) as a stationary Stokes system and apply the elliptic regularity of such a system (see, for instance, [25, Proposition 2.2, p.33]):

$$\begin{aligned}{} & {} \left\| \varphi \right\| _{L^2(0,T;H^2(\Omega ))} +\left\| \pi \right\| _{L^2(0,T;H^1(\Omega )/ \mathbb {R})} \lesssim \left\| \partial _t \varphi \right\| _{L^2(0,T;L^2(\Omega ))} \nonumber \\{} & {} \quad + \sum _{i=1}^n \left\| a^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))} \left\| b^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))} \left\| \varphi \right\| _{L^2(0,T;L^2(\Omega ))}. \end{aligned}$$
(A.3)

Combining (A.1), (A.2) and (A.3), we deduce (2.4).

Then to obtain (2.5), we differentiate (2.3) in time to obtain

$$\begin{aligned} \left\{ \begin{array}{rl} -\partial _{t}\left( \partial _t \varphi \right) -\Delta \left( \partial _t \varphi \right) +\sum _{i=1}^n \left( \int _{\Omega } a^{(i)}\cdot \partial _t \varphi \ dx\right) b^{(i)}+\nabla \left( \partial _t \pi \right) =&{} g^{(1)}~\text{ in } \ (0,T)\times \Omega ,\\ {\text {div}}\left( \partial _t \varphi \right) =&{}0~\text{ in } \ (0,T)\times \Omega ,\\ \partial _t \varphi =&{} 0 ~\text{ on }\ (0,T)\times \partial \Omega ,\\ \left( \partial _t \varphi \right) (T,\cdot )=&{} 0 ~\text{ in } \ \Omega , \end{array} \right. \end{aligned}$$
(A.4)

with

$$\begin{aligned} g^{(1)}:=\partial _t g -\sum _{i=1}^n \left( \int _{\Omega } \partial _t a^{(i)}\cdot \varphi \ \textrm{d}x\right) b^{(i)}-\sum _{i=1}^n \left( \int _{\Omega } a^{(i)}\cdot \varphi \ \textrm{d}x\right) \partial _t b^{(i)}. \end{aligned}$$

From the first part of the proof, we have

$$\begin{aligned} \left\| \partial _t \varphi \right\| _{H^1(0,T;L^2(\Omega ))} +\left\| \partial _t \varphi \right\| _{L^2(0,T;H^2(\Omega ))} \lesssim \left\| g^{(1)} \right\| _{L^2(0,T;L^2(\Omega ))}. \end{aligned}$$
(A.5)

We can check that

$$\begin{aligned}{} & {} \left\| g^{(1)} \right\| _{L^2(0,T;L^2(\Omega ))}\\{} & {} \lesssim \left\| g \right\| _{H^1(0,T;L^2(\Omega ))} + \sum _{i=1}^n \left\| a^{(i)}\right\| _{H^1(0,T;L^2(\Omega ))}\left\| b^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))} \left\| \varphi \right\| _{L^\infty (0,T;L^2(\Omega ))}\\{} & {} \quad + \sum _{i=1}^n \left\| b^{(i)}\right\| _{H^1(0,T;L^2(\Omega ))}\left\| a^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))} \left\| \varphi \right\| _{L^\infty (0,T;L^2(\Omega ))}. \end{aligned}$$

Combining the above estimate with (A.5) and (2.4) implies

$$\begin{aligned} \left\| \partial _t \varphi \right\| _{H^1(0,T;L^2(\Omega ))} +\left\| \partial _t \varphi \right\| _{L^2(0,T;H^2(\Omega ))} \lesssim \left\| g \right\| _{H^1(0,T;L^2(\Omega ))}. \end{aligned}$$
(A.6)

Then, using the elliptic regularity of the Stokes system (see, for instance, [25, Proposition 2.2, p.33]), we deduce

$$\begin{aligned}{} & {} \left\| \varphi \right\| _{L^2(0,T;H^4(\Omega ))} +\left\| \pi \right\| _{L^2(0,T;H^3(\Omega )/ \mathbb {R})} \lesssim \left\| \partial _t \varphi \right\| _{L^2(0,T;H^2(\Omega ))} \\{} & {} + \sum _{i=1}^n \left\| a^{(i)}\right\| _{L^\infty (0,T;L^2(\Omega ))} \left\| b^{(i)}\right\| _{L^2(0,T;H^2(\Omega ))} \left\| \varphi \right\| _{L^\infty (0,T;L^2(\Omega ))}. \end{aligned}$$

Gathering (A.6), (2.4) and the above estimate yields (2.5).

Finally, to obtain (2.6), we differentiate (A.4) in time to obtain

$$\begin{aligned}\left\{ \begin{array}{rl} -\partial _{t}\left( \partial _t^2 \varphi \right) -\Delta \left( \partial _t^2 \varphi \right) +\sum _{i=1}^n \left( \int _{\Omega } a^{(i)}\cdot \partial _t^2 \varphi \ dx\right) b^{(i)}+\nabla \left( \partial _t^2 \pi \right) =&{} g^{(2)}~\text{ in } \ (0,T)\times \Omega ,\\ {\text {div}}\left( \partial _t^2 \varphi \right) =&{} 0~\text{ in } \ (0,T)\times \Omega ,\\ \partial _t^2 \varphi =&{} 0 ~\text{ on }\ (0,T)\times \partial \Omega ,\\ \left( \partial _t^2 \varphi \right) (T,\cdot )=&{} 0 ~\text{ in } \ \Omega , \end{array} \right. \end{aligned}$$

with

$$\begin{aligned} g^{(2)}:= & {} \partial _t^2 g -\sum _{i=1}^n \left[ \left( \int _{\Omega } \partial _t^2 a^{(i)}\cdot \varphi \ \textrm{d}x\right) b^{(i)} +\left( \int _{\Omega } a^{(i)}\cdot \varphi \ \textrm{d}x\right) \partial _t^2 b^{(i)} \right. \\{} & {} \left. +2 \left( \int _{\Omega } \partial _t a^{(i)}\cdot \partial _t \varphi \ \textrm{d}x\right) b^{(i)} +2 \left( \int _{\Omega } \partial _t a^{(i)}\cdot \varphi \ \textrm{d}x\right) \partial _t b^{(i)} \right. \\{} & {} \left. +2 \left( \int _{\Omega } a^{(i)}\cdot \partial _t \varphi \ \textrm{d}x\right) \partial _t b^{(i)} \right] . \end{aligned}$$

We can check that

$$\begin{aligned} \left\| g^{(2)} \right\| _{L^2(0,T;L^2(\Omega ))}\lesssim & {} \left\| g \right\| _{H^2(0,T;L^2(\Omega ))} \\{} & {} + \sum _{i=1}^n \left\| a^{(i)}\right\| _{H^2(0,T;L^2(\Omega ))}\left\| b^{(i)}\right\| _{H^2(0,T;L^2(\Omega ))} \left\| \varphi \right\| _{L^\infty (0,T;L^2(\Omega ))}. \end{aligned}$$

From the first part of the proof and the above estimate, we have

$$\begin{aligned} \left\| \partial _t^2 \varphi \right\| _{H^1(0,T;L^2(\Omega ))} +\left\| \partial _t^2 \varphi \right\| _{L^2(0,T;H^2(\Omega ))} \lesssim \left\| g \right\| _{H^2(0,T;L^2(\Omega ))}. \end{aligned}$$
(A.7)

Using the elliptic regularity of the Stokes system (see, for instance, [25, Proposition 2.2, p.33]) on (A.4), we deduce from the above estimate that

$$\begin{aligned} \left\| \partial _t \varphi \right\| _{L^2(0,T;H^4(\Omega ))} \lesssim \left\| g \right\| _{H^2(0,T;L^2(\Omega ))}+\left\| g \right\| _{H^1(0,T;H^2(\Omega ))}. \end{aligned}$$

Then, using the elliptic regularity of the Stokes system (see, for instance, [25, Proposition 2.2, p.33]) on (2.3) and the above estimate, we obtain

$$\begin{aligned} \left\| \varphi \right\| _{L^2(0,T;H^6(\Omega ))} \lesssim \left\| g \right\| _{H^2(0,T;L^2(\Omega ))}+\left\| g \right\| _{H^1(0,T;H^2(\Omega ))}+\left\| g \right\| _{L^2(0,T;H^4(\Omega ))}. \end{aligned}$$

Combining the above relation and (A.7) gives (2.6).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreño, N., Takahashi, T. Control Problems for the Navier–Stokes System with Nonlocal Spatial Terms. J Optim Theory Appl 200, 724–767 (2024). https://doi.org/10.1007/s10957-023-02321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02321-1

Keywords

Mathematics Subject Classification

Navigation