Skip to main content
Log in

Sum-of-Squares Relaxations in Robust DC Optimization and Feature Selection

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper presents sum-of-squares (SOS) relaxation results to a difference-of-convex-max (DC-max) optimization involving SOS-convex polynomials in the face of constraint data uncertainty and their applications to robust feature selection. The main novelty of the present work in relation to the recent research in robust convex and DC optimization is the derivation of a new form of minimally exact SOS relaxations for robust DC-max problems. This leads to the identification of broad classes of robust DC-max problems with finitely exact SOS relaxations that are numerically tractable. They allow one to find the optimal values of these classes of DC-max problems by solving a known finite number of semi-definite programs (SDPs) for certain concrete cases of commonly used uncertainty sets in robust optimization. In particular, we derive relaxation results for a class of robust fractional programs. Also, we provide a finitely exact SDP relaxation for a DC approximation problem of an NP-hard robust feature selection model which gives computable upper bounds for the global optimal value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data sets were generated or analyzed during the current study, and so data sharing is not applicable to this article.

References

  1. Ahmadi, A.A., Parrilo, P.A.: A complete characterization of the gap between convexity and SOS-convexity. SIAM J. Optim. 23(2), 811–833 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  4. Bradley, P. S., Mangasarian, O. L.: Feature selection via concave minimization and support vector machines. In: Shavlik, J. W. (ed.) International Conference on Machine Learning (ICML), vol. 98, pp. 82–90 (1998)

  5. Bradley, P.S., Mangasarian, O.L., Street, W.N.: A complete characterization of the gap between convexity and SOS-convexity. INFORMS J. Comput. 10(2), 209–217 (1998)

    Article  MathSciNet  Google Scholar 

  6. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cervantes, J., Garcia-Lamont, F., Rodrıguez-Mazahua, L., Lopez, A.: A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020)

    Article  Google Scholar 

  8. Chieu, N.H., Chuong, T.D., Jeyakumar, V., Li, G.: A copositive Farkas lemma and minimally exact conic relaxations for robust quadratic optimization with binary and quadratic constraints. Oper. Res. Lett. 47(6), 530–536 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chieu, N.H., Feng, J.W., Gao, W., Li, G., Wu, D.: SOS-convex semialgebraic programs and its applications to robust optimization: a tractable class of nonsmooth convex optimization. Set-Valued Var. Anal. 26, 305–326 (2018)

    Article  MathSciNet  Google Scholar 

  10. Dinkelbach, W.: On nonlinear fractional programming. Manage. Sci. 13(7), 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  11. Dunbar, M., Murray, J.M., Cysique, L.A., Brew, B.J., Jeyakumar, V.: Simultaneous classification and feature selection via convex quadratic programming with application to HIV-associated neurocognitive disorder assessment. Eur. J. Oper. Res. 206(2), 470–478 (2010)

    Article  Google Scholar 

  12. Gaudioso, M., Gorgone, E., Hiriart-Urruty, J.B.: Feature selection in SVM via polyhedral k-norm. Optim. Lett. 14(1), 19–36 (2020)

    Article  MathSciNet  Google Scholar 

  13. Gotoh, J.Y., Takeda, A., Tono, K.: DC formulations and algorithms for sparse optimization problems. Math. Program. 169, 141–176 (2018)

    Article  MathSciNet  Google Scholar 

  14. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (2011). http://cvxr.com/cvx

  15. Harada, R., Kuroiwa, D.: Lagrange-type duality in DC programming. J. Math. Anal. Appl. 418(1), 415–424 (2014)

    Article  MathSciNet  Google Scholar 

  16. Helton, J.W., Nie, J.: Semi-definite representation of convex sets. Math. Program. 120(2), 21–64 (2010)

    Article  Google Scholar 

  17. Hiriart-Urruty, J. B., Lemarechal, C.: Fundamentals of Convex Analysis. Springer Science & Business Media (2004)

  18. Horel, A.E.: Application of ridge analysis to regression problems. Chem. Eng. Prog. 58, 54–59 (1962)

    Google Scholar 

  19. Jeyakumar, V., Li, G.: A new class of alternative theorems for SOS-convex inequalities and robust optimization. Appl. Anal. 94(1), 56–74 (2015)

    Article  MathSciNet  Google Scholar 

  20. Jeyakumar, V., Lee, G.M., Linh, N.T.H.: Generalized Farkas’ lemma and gap-free duality for minimax DC optimization with polynomials and robust quadratic optimization. J. Glob. Optim. 64, 679–702 (2016)

    Article  MathSciNet  Google Scholar 

  21. Jeyakumar, V., Li, G.: Exact SDP relaxations for classes of nonlinear semi-definite programming problems. Oper. Res. Lett. 40(6), 529–536 (2012)

    Article  MathSciNet  Google Scholar 

  22. Jeyakumar, V., Li, G., Vicente-Perez, J.: Robust SOS-convex polynomial optimization problems: exact SDP relaxations. Optim. Lett. 9, 1–18 (2015)

    Article  MathSciNet  Google Scholar 

  23. Jeyakumar, V., Vicente-Perez, J.: Dual semi-definite programs without duality gaps for a class of convex minimax programs. J. Optim. Theory Appl. 162, 735–753 (2014)

    Article  MathSciNet  Google Scholar 

  24. Lasserre, J.B.: An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  25. Lasserre, J.B.: Convexity in semi-algebraic geometry and polynomial optimization. SIAM J. Optim. 19(4), 1995–2014 (2009)

    Article  Google Scholar 

  26. Le Thi, H.A., Le, H.M., Pham Dinh, T.: Feature selection in machine learning: an exact penalty approach using a difference of convex function algorithm. Mach. Learn. 101, 163–186 (2015)

    Article  MathSciNet  Google Scholar 

  27. Le Thi, H. A., Pham Dinh, T.: Open issues and recent advances in DC programming and DCA. J. Glob. Optim. 1–58 (2023)

  28. Le Thi, H.A., Vo, X.T., Pham Dinh, T.: Feature selection for linear SVMs under uncertain data: robust optimization based on difference of convex functions algorithms. Neural Netw. 59, 36–50 (2014)

    Article  Google Scholar 

  29. Lee, J.H., Lee, G.M.: On minimizing difference of an SOS-convex polynomial and a support function over an SOS-concave matrix polynomial constraint. Math. Program. 169, 177–198 (2018)

    Article  MathSciNet  Google Scholar 

  30. Martınez-Legaz, J.E., Volle, M.: Duality in DC programming: the case of several DC constraints. J. Math. Anal. Appl. 237(2), 657–671 (1998)

    Article  Google Scholar 

  31. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  32. Su, C.T., Yang, C.H.: Feature selection for the SVM: an application to hypertension diagnosis. Expert Syst. Appl. 34(1), 754–763 (2008)

    Article  Google Scholar 

  33. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  Google Scholar 

  34. Woolnough, D., Jeyakumar, N., Li, G., Loy, C. T., Jeyakumar, V.: Robust optimization and data classification for characterization of Huntington disease onset via duality methods. J. Optim. Theory Appl. 1–27 (2022)

  35. Zhang, W., Hong, B., Liu, W., Ye, J., Cai, D., He, X., Wang, J.: Scaling up sparse support vector machines by simultaneous feature and sample reduction. J. Mach. Learn. Res. 20(121), 1–39 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was partially supported by a grant from the Australian Research Council. The second author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (NRF-2022R1A2C1003309). The third author was supported by the National Research Foundation of Korea (NRF) grant Funded by the Korea Government (MSIT) (NRF-2021R1C1C2004488). The authors are grateful to the referees and the handling editor for their valuable suggestions and constructive comments which have contributed to the final preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaithilingam Jeyakumar.

Ethics declarations

Conflict of interest

The first author declares that he is an Associate Editor for the Journal of Optimization Theory and Applications. The other three authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Communicated by Luis Zuluaga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Supplementary Proofs for Sect. 4

Appendix A: Supplementary Proofs for Sect. 4

Lemma A.1

Let \(\varphi _k: [0,1]^n \rightarrow {{\mathbb {R}}}\) be

$$\begin{aligned}&\varphi _k (r_1,\ldots ,r_n) \\&\quad =\max _{ \begin{array}{c} \mu \in {{\mathbb {R}}}, \\ {\widetilde{\xi }}_i, {\overline{\xi }}_i \ge 0, i=1,\ldots ,m, \\ \overline{p}_j, \overline{q}_j \ge 0, j=1,\ldots ,n \end{array} } \Big \{\mu : (1-\lambda ) \sum _{i=1}^m\sigma _i \xi _i + \lambda \alpha \sum _{j=1}^n(p_j+q_j) - \lambda \alpha \sum _{j=1}^nr_j (p_j+q_j) \\&\qquad + \lambda \sum _{j=1}^nr_j + \sum _{i=1}^m{\widetilde{\xi }}_i [1-\xi _i - y_i ( \langle p-q,c_k\rangle + b ) ] \\&\qquad -\sum _{i=1}^m{\overline{\xi }}_i \xi _i - \sum _{j=1}^n\overline{p}_j p_j - \sum _{j=1}^n\overline{q}_j q_j \ge \mu ,\ \forall (p,q,\xi ,b) \in {{\mathbb {R}}}^{2n+m+1} \Big \}. \end{aligned}$$

Then, \(\varphi _k\) is concave.

Proof

Take \((r_1,\ldots ,r_n), (r_1',\ldots ,r_n') \in [0,1]^n\) and \(\theta \in (0,1)\). There exist \(\mu \in {{\mathbb {R}}}, {\widetilde{\xi }}_i,{\overline{\xi }}_i, \overline{p}_j, \overline{q}_j \ge 0\) such that \(\varphi (r_1,\ldots , r_n) = \mu \) and

$$\begin{aligned}&(1-\lambda ) \sum _{i=1}^m\sigma _i \xi _i + \lambda \alpha \sum _{j=1}^n(p_j+q_j) - \lambda \alpha \sum _{j=1}^nr_j (p_j+q_j) \\ {}&\quad + \lambda \sum _{j=1}^nr_j + \sum _{i=1}^m{\widetilde{\xi }}_i [1-\xi _i - y_i ( \langle p-q,c_k\rangle + b ) ] \\ {}&\quad - \sum _{i=1}^m{\overline{\xi }}_i \xi _i - \sum _{j=1}^n\overline{p}_j p_j - \sum _{j=1}^n\overline{q}_j q_j \ge \mu ,\ \forall (p,q,\xi ,b) \in {{\mathbb {R}}}^{2n+m+1}. \end{aligned}$$

There exist \(\mu '\in {{\mathbb {R}}}, {\widetilde{\xi }}_i',{\overline{\xi }}_i', \overline{p}_j', \overline{q}_j' \ge 0\) and

$$\begin{aligned}&(1-\lambda ) \sum _{i=1}^m\sigma _i \xi _i + \lambda \alpha \sum _{j=1}^n(p_j+q_j) - \lambda \alpha \sum _{j=1}^nr_j' (p_j+q_j) \\&\quad + \lambda \sum _{j=1}^nr_j' + \sum _{i=1}^m{\widetilde{\xi }}_i' [1-\xi _i - y_i ( \langle p-q,c_k\rangle + b ) ]\\&\quad - \sum _{i=1}^m{\overline{\xi }}_i' \xi _i - \sum _{j=1}^n\overline{p}_j' p_j - \sum _{j=1}^n\overline{q}_j' q_j \ge \mu ',\ \forall (p,q,\xi ,b) \in {{\mathbb {R}}}^{2n+m+1}. \end{aligned}$$

Now,

$$\begin{aligned}{} & {} \theta \varphi (r_1,\ldots , r_n) + (1-\theta ) \varphi (r_1', \ldots , r_n')= \theta \mu + (1-\theta ) \mu ' \\{} & {} \quad \le \theta \Big [(1-\lambda ) \sum _{i=1}^m\sigma _i \xi _i + \lambda \alpha \sum _{j=1}^n(p_j+q_j) - \lambda \alpha \sum _{j=1}^nr_j (p_j+q_j) + \lambda \sum _{j=1}^nr_j \\{} & {} \qquad + \sum _{i=1}^m{\widetilde{\xi }}_i [1-\xi _i - y_i ( \langle p-q,c_k\rangle + b ) ] - \sum _{i=1}^m{\overline{\xi }}_i \xi _i - \sum _{j=1}^n\overline{p}_j p_j - \sum _{j=1}^n\overline{q}_j q_j \Big ] \\{} & {} \qquad + (1-\theta ) \Big [(1-\lambda ) \sum _{i=1}^m\sigma _i \xi _i + \lambda \alpha \sum _{j=1}^n(p_j+q_j) - \lambda \alpha \sum _{j=1}^nr_j' (p_j+q_j) \\{} & {} \qquad + \lambda \sum _{j=1}^nr_j' + \sum _{i=1}^m{\widetilde{\xi }}_i' [1-\xi _i - y_i ( \langle p-q,c_k\rangle + b ) ] - \sum _{i=1}^m{\overline{\xi }}_i' \xi _i - \sum _{j=1}^n\overline{p}_j' p_j - \sum _{j=1}^n\overline{q}_j' q_j \Big ]\\{} & {} \quad = (1-\lambda ) \sum _{i=1}^m\sigma _i \xi _i + \lambda \alpha \sum _{j=1}^n(p_j+q_j) - \lambda \alpha \sum _{j=1}^n(\theta r_j + (1-\theta ) r_j') (p_j+q_j) \\{} & {} \qquad + \lambda \sum _{j=1}^n(\theta r_j + (1-\theta ) r_j') + \sum _{i=1}^m(\theta {\widetilde{\xi }}_i + (1-\theta ) {\widetilde{\xi }}_i') \Big [1-\xi _i - y_i ( \langle p-q,c_k\rangle + b ) \Big ] \\{} & {} \qquad - \sum _{i=1}^m(\theta {\overline{\xi }}_i + (1-\theta ) {\overline{\xi }}_i') \xi _i - \sum _{j=1}^n(\theta \overline{p}_j + (1-\theta ) \overline{p}_j') p_j - \sum _{j=1}^n(\theta \overline{q}_j + (1-\theta ) \overline{q}_j') q_j \\{} & {} \quad \le \varphi (\theta r_1 + (1-\theta ) r_1, \ldots , \theta r_n + (1-\theta ) r_n). \end{aligned}$$

By definition, \(\varphi _k\) is concave. \(\square \)

Infimum of a concave function over the convex hull of finitely many points is equal to the infimum over the set of those points [31, Theorem 32.2].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyakumar, V., Lee, G.M., Lee, J.H. et al. Sum-of-Squares Relaxations in Robust DC Optimization and Feature Selection. J Optim Theory Appl 200, 308–343 (2024). https://doi.org/10.1007/s10957-023-02312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02312-2

Keywords

Mathematics Subject Classification

Navigation