Skip to main content
Log in

Rational Expectations Models with Multiplicative Noise

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the multiplicative-noise rational expectations (MRE) problem. By resorting to a linear quadratic optimal control (LQOC) problem, the approximate solution to the MRE problem can be obtained. It is worth highlighting that this approximate solution can be highly close to the exact solution by adjusting weighted matrices in the cost function of the LQOC problem. Since the conditional expectation of the state is involved in the cost function, the LQOC problem is an optimization control with an additional measurability restriction, which is very involved. The orthogonal decomposition technique is used to deal with this measurability restriction. The solvability condition and the optimal decision are given by developing generalized Riccati-type equations. Numerical experiments are provided to illustrate the effectiveness of the achieved results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ascari, G., Fagiolo, G., Roventini, A.: Fat-tail distributions and business-cycle models. Macroecon. Dyn. 19(2), 465–476 (2015)

    Article  Google Scholar 

  2. Auerbach, A.J., Gorodnichenko, Y.: Fiscal multipliers in recession and expansion. Fiscal Policy after the Financial Crisis 63–98 (2012)

  3. Barro, R.J.: Rational expectations and the role of monetary policy. J. Monet. Econ. 2(1), 1–32 (1976)

    Article  Google Scholar 

  4. Başar, T.: Some thoughts on rational expectations models, and alternate formulations. Computers Mathematics with Applications. 591–604 (1989)

  5. Benhabib, J., Dave, C.: Learning, large deviations and rare events. Rev. Econ. Dyn. 17(3), 367–382 (2014)

    Article  Google Scholar 

  6. Blanchard, O.J.: Backward and forward solutions for economies with rational expectations. Am. Econ. Rev. 69(2), 114–118 (1979)

    Google Scholar 

  7. Blanchard, O.J., Kahn, C.M.: The solution of linear difference models under rational expectations. Econ. J. Econ. Soc. 1305–1311 (1980)

  8. Carravetta, F., Sorge, M.M.: A “nearly ideal’’ solution to linear time-varying rational expectations models. Comput. Econ. 35(4), 331–353 (2010)

    Article  MATH  Google Scholar 

  9. Carravetta, F., Sorge, M.M.: Model reference adaptive expectations in Markov-switching economies. Econ. Model. 32, 551–559 (2013)

    Article  Google Scholar 

  10. Chib, S., Ramamurthy, S.: DSGE models with student-t errors. Economet. Rev. 33(1–4), 152–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chow, G.C.: Estimation of rational expectations models. J. Econ. Dyn. Control 2, 241–255 (1980)

    Article  MathSciNet  Google Scholar 

  12. Christiano, J.L.: On the fit of new Keynesian models: comment. J. Bus. Econ. Stat. 60(2), 143–151 (2007)

    Article  MathSciNet  Google Scholar 

  13. Cogley, T., Sargent, T.J.: Evolving post-world war II US inflation dynamics. NBER Macroecon. Annu. 16, 331–373 (2001)

    Article  Google Scholar 

  14. Cúrdia, V., Del Negro, M., Greenwald, D.L.: Rare shocks, great recessions. J. Appl. Economet. 29(7), 1031–1052 (2014)

    Article  MathSciNet  Google Scholar 

  15. Dave, C., Feigenbaum, J.: Precautionary learning and inflationary biases. Macroecon. Dyn. 24(5), 1124–1150 (2020)

    Article  Google Scholar 

  16. Dave, C., Sorge, M.M.: Sunspot-driven fat tails: a note. Econ. Lett. 193, 109304 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. De Santis, A., Germani, A., Scoglio, C.: Kalman filter approach to solution of rational expectations models. Comput. Math. Appl. 25(12), 3–47 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Durrett, R.: Probability: Theory and examples, vol. 49. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  19. Fagiolo, G., Napoletano, M., Roventini, A.: Are output growth-rate distributions fat-tailed? Some evidence from OECD countries. J. Appl. Economet. 23(5), 639–669 (2008)

    Article  MathSciNet  Google Scholar 

  20. Li, L., Zhang, H., Wang, Y.: Stabilization and optimal control of discrete-time systems with multiplicative noise and multiple input delays. Syst. Control Lett. 147, 104833 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, T., Xu, J., Zhang, H., Başar, T.: Optimal control approach for rational expectations models with longer forward-looking time. In: 2020 16th International Conference on Control, Automation, Robotics and Vision, pp. 1041–1048 (2020)

  22. Phillis, Y.: Controller design of systems with multiplicative noise. IEEE Trans. Autom. Control 30(10), 1017–1019 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sargent, T.J., Wallace, N.: The stability of models of money and growth with perfect foresight. Econ. J. Econ. Soc. 1043–1048 (1973)

  24. Sargent, T.J., Wallace, N.: “Rational expectations’’, the optimal monetary instrument, and the optimal money supply rule. J. Polit. Econ. 83(2), 241–254 (1975)

    Article  Google Scholar 

  25. Shiller, R.J.: Rational expectations and the dynamic structure of macroeconomic models: a critical review. J. Monet. Econ. 4(1), 1–44 (1978)

    Article  Google Scholar 

  26. Taylor, J.B.: Conditions for unique solutions in stochastic macroeconomic models with rational expectations. Econ. J. Econ. Soc. 1377–1385 (1977)

  27. Wall, K.D.: Generalized expectations modeling in macroeconometrics. J. Econ. Dyn. Control 2, 161–184 (1980)

    Article  Google Scholar 

  28. Xu, J., Zhang, H., Başar, T.: Stackelberg solution for a two-agent rational expectations model. Automatica 129, 109601 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, H., Li, L., Xu, J., Fu, M.: Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise. IEEE Trans. Autom. Control 60(10), 2599–2613 (2015)

Download references

Acknowledgements

This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61821004), Original Exploration Program of the National Natural Science Foundation of China(62250056), Major Basic Research of Natural Science Foundation of Shandong Province (ZR2021ZD14), High-level Talent Team Project of Qingdao West Coast New Area (RCTD-JC-2019-05), and Key Research and Development Program of Shandong Province (2020CXGC01208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Wang.

Additional information

Communicated by Xiaolu Tan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Lemma 2.1

It follows from the definition in Notations that we have

$$\begin{aligned} {\hat{u}}_{k|k-2}&={\mathbb {E}}\{u_k|{\mathcal {F}}_{k-2}\}, \end{aligned}$$
(74)
$$\begin{aligned} {\hat{u}}_{k}|^{k-1}_{k-2}&=u_k-{\mathbb {E}}\{u_k|{\mathcal {F}}_{k-2}\}, \end{aligned}$$
(75)

where \({\mathcal {F}}_{k-2}=\sigma \{\omega _0,\omega _1,\ldots ,\omega _{k-2},\nu _0,\nu _1,\ldots ,\nu _{k-2}\}\). Theorem 4.1.14 in [18] implies that for every \({\mathcal {F}}_{k-2}\)-measurable W, there holds

$$\begin{aligned} {\mathbb {E}}\{W'u_k|{\mathcal {F}}_{k-2}\}=W'{\mathbb {E}}\{u_k|{\mathcal {F}}_{k-2}\}. \end{aligned}$$
(76)

Taking expectation gives

$$\begin{aligned} {\mathbb {E}}\{W'(u_k-{\mathbb {E}}\{u_k|{\mathcal {F}}_{k-2}\})\}=0. \end{aligned}$$
(77)

Associating (75) with (77), we know that \({\hat{u}}_{k}|^{k-1}_{k-2}\) is orthogonal to any \({\mathcal {F}}_{k-2}\)-measurable vector. It is evident \({\hat{u}}_{k|k-2}\) is \({\mathcal {F}}_{k-2}\)-measurable, so \({\hat{u}}_{k|k-2}\) and \({\hat{u}}_{k}|^{k-1}_{k-2}\) are orthogonal.

Proof of Theorem 2.1

Considering the truncated cost function (13) for any \(k,0\le k\le K\), we have

$$\begin{aligned} J_k&=\sum ^K_{j=k}{\mathbb {E}}\{(u_j-{\hat{x}}_{j+2|j-1})'Q(u_j-{\hat{x}}_{j+2|j-1})\nonumber \\&\quad +({\hat{x}}_{j+2|j-1}-x_{j+2})'R({\hat{x}}_{j+2|j-1}-x_{j+2})\}. \end{aligned}$$
(78)

Consistent with (78), we assume that the prediction process by the economic agents ends at \(k=K\). Therefore, we set \(u_k=0\) for \(k>K\). From the system (11), (78) can be written as

$$\begin{aligned} J_k&={\mathbb {E}}\Big \{\sum ^K_{j=k}u_j'Qu_j+\sum ^{K-1}_{j=k}[-2u_j'Q{\hat{x}}_{j+2|j-1}+x_{j+2}'Rx_{j+2}\nonumber \\&\quad +{{\hat{x}}_{j+2|j-1}}'(Q-R){\hat{x}}_{j+2|j-1}]\nonumber \\&\quad -2u_K'QA{\hat{x}}_{K+1|K-1}+{{\hat{x}}_{K+1|K-1}}'A'(Q-R)A{\hat{x}}_{K+1|K-1}\nonumber \\&\quad +x_{K+1}'(A'RA+\tau A_0'RA_0)x_{K+1}+\eta tr(R)\Big \}. \end{aligned}$$
(79)

Now, we handle the optimization problem by dynamic programming procedure. In the case of \(k=K-1\), we get

$$\begin{aligned} \min _{u_K}J_{K-1}&=\min _{u_K}{\mathbb {E}}\{u_{K-1}'Qu_{K-1}+u_K'Qu_K-2u_{K-1}'Q{\hat{x}}_{K+1|K-2}+{{\hat{x}}_{K+1|K-2}}'(Q\nonumber \\&\quad -R){\hat{x}}_{K+1|K-2}-2u_K'QA{\hat{x}}_{K+1|K-1}+{{\hat{x}}_{K+1|K-1}}'A'(Q-R)A{\hat{x}}_{K+1|K-1}\nonumber \\&\quad +x_{K+1}'(R+A'RA+\tau A_0'RA_0)x_{K+1}+\eta tr(R)\}, \end{aligned}$$
(80)

in virtue of (11) and (80), one has

$$\begin{aligned} \min _{u_K}J_{K-1}&=\min _{u_K}{\mathbb {E}}\{{{\hat{u}}_{K|K-2}}'B'(Q-R)B{\hat{u}}_{K|K-2}-2{{\hat{u}}_{K|K-2}}'B'[(Q-R)A{\hat{x}}_{K|K-2}\nonumber \\&\quad +Qu_{K-1}]+{{\hat{x}}_{K|K-2}}'A'(Q-R)A{\hat{x}}_{K|K-2}+u_K'Xu_K+2u_K'Yx_K\nonumber \\&\quad +x_K'Zx_K+u_{K-1}'Qu_{K-1}-2u_{K-1}'QA{\hat{x}}_{K|K-2}\nonumber \\&\quad +\eta tr(R+A'RA+\tau A_0'RA_0)+\eta tr(R)\}, \end{aligned}$$
(81)

where

$$\begin{aligned} X&=Q+B'(R+A'QA+\tau A_0'RA_0)B\\&\quad +\tau B_0'(R+A'RA+\tau A_0'RA_0)B_0-QAB-B'A'Q,\\ Y&=B'(R+A'QA+\tau A_0'RA_0)A+\tau B_0'(R+A'RA+\tau A_0'RA_0)A_0-QAA,\\ Z&=A'(R+A'QA+\tau A_0'RA_0)A+\tau A_0'(R+A'RA+\tau A_0'RA_0)A_0. \end{aligned}$$

It can be noticed that (81) contains the \({\mathcal {F}}_{K-1}\)-measurable \(u_{K}\) and the \({\mathcal {F}}_{K-2}\)-measurable \(u_{K|K-2}\) simultaneously and they are correlated, which explicitly shows that the converted optimization problem \(\min J_{K-1}\) is an optimization problem with extra measurability constraint. To eliminate the constraint, we decompose the control input orthogonally. The new inputs are no longer correlated, which guarantees dynamic programming procedures can proceed smoothly.

According to Lemma 2.1, \(u_K\) and \(x_K\) in (81) can be orthogonally decomposed as

$$\begin{aligned} u_K&={\hat{u}}_{K|K-2}+{\hat{u}}_{K}|^{K-1}_{K-2}, \end{aligned}$$
(82)
$$\begin{aligned} x_K&={\hat{x}}_{K|K-2}+{\hat{x}}_{K}|^{K-1}_{K-2}. \end{aligned}$$
(83)

Inserting (82)-(83) into (81) yields

$$\begin{aligned} J_{K-1}&={\mathbb {E}}\{{{\hat{u}}_{K|K-2}}'\varUpsilon ^{2}_K{\hat{u}}_{K|K-2}+2{{\hat{u}}_{K|K-2}}'(\varPsi ^{2}_K{\hat{x}}_{K|K-2}-B'Qu_{K-1})\nonumber \\&\quad +{{\hat{x}}_{K|K-2}}'[A'(Q+M^2_{K+1})A+\tau A_0'(R+M^1_{K+1})A_0]{\hat{x}}_{K|K-2}\nonumber \\&\quad +{\hat{u}}'_{K}|^{K-1}_{K-2}\varUpsilon ^1_K{\hat{u}}_{K}|^{K-1}_{K-2}+2{\hat{u}}'_{K}|^{K-1}_{K-2}\varPsi ^1_K{\hat{x}}_{K}|^{K-1}_{K-2}\nonumber \\&\quad +{\hat{x}}'_{K}|^{K-1}_{K-2}[A'(R+M^{2}_{K+1})A+\tau A_0'(R+M^1_{K+1})A_0]{\hat{x}}_{K}|^{K-1}_{K-2}\nonumber \\&\quad -2u_{K-1}'S_{K+1}{\hat{x}}_{K|K-2}+u_{K-1}'T_{K+1}u_{K-1}\nonumber \\&\quad +\eta tr(R+M^1_{K+1})+\eta tr(R)\}, \end{aligned}$$
(84)

where we have used the equalities (17)-(18) with \(k=K\) and the initial value \(M^1_{K+1}=A'RA+\tau A_0'RA_0\), \(M^2_{K+1}=A'QA+\tau A_0'RA_0\), \(S_{K+1}=QA\), and \(T_{K+1}=Q\).

Making complete square over \({\hat{u}}_{K|K-2}\) and \({\hat{u}}_{K}|^{K-1}_{K-2}\) in (84) results in

$$\begin{aligned} J_{K-1}&={\mathbb {E}}\{({\hat{u}}_{K|K-2}-\bar{{\hat{u}}}_{K|K-2})'\varUpsilon ^2_{K}({\hat{u}}_{K|K-2}-\bar{{\hat{u}}}_{K|K-2})\nonumber \\&\quad +({\hat{u}}_{K}|^{K-1}_{K-2}-\bar{{\hat{u}}}_{K}|^{K-1}_{K-2})'\varUpsilon ^1_{K}({\hat{u}}_{K}|^{K-1}_{K-2}-\bar{{\hat{u}}}_{K}|^{K-1}_{K-2})\nonumber \\&\quad +{{\hat{x}}_{K|K-2}}'M^2_{K}{\hat{x}}_{K|K-2}+{\hat{x}}'_{K}|^{K-1}_{K-2}M^1_{K}{\hat{x}}_{K}|^{K-1}_{K-2}-2u_{K-1}'S_K{\hat{x}}_{K|K-2}\nonumber \\&\quad +u_{K-1}'T_Ku_{K-1}+\eta tr(R+M^1_{K+1})+\eta tr(R)\}, \end{aligned}$$
(85)

where

$$\begin{aligned} \bar{{\hat{u}}}_{K|K-2}&=-L^2_{K}{\hat{x}}_{K|K-2}-K_{K}u_{K-1}, \end{aligned}$$
(86)
$$\begin{aligned} \bar{{\hat{u}}}_{K}|^{K-1}_{K-2}&=-L^1_{K}{\hat{x}}_{K}|^{K-1}_{K-2}. \end{aligned}$$
(87)

In the above, (15)-(20), and (23)-(24) are utilized with \(k=K\).

From (86)–(87) and the system (11), the optimal \(u_K\) admits (46) with \(k=K\). The optimal cost of (85) is given as

$$\begin{aligned} \min _{u_K}J_{K-1}&={\mathbb {E}}\{u_{K-1}'T_Ku_{K-1}-2u_{K-1}'S_K{\hat{x}}_{K|K-2}+{{\hat{x}}_{K|K-2}}'M^2_{K}{\hat{x}}_{K|K-2}\nonumber \\&\quad +{\hat{x}}'_{K}|^{K-1}_{K-2}M^1_{K}{\hat{x}}_{K}|^{K-1}_{K-2}+\eta tr(R+M^1_{K+1})+\eta tr(R)\}. \end{aligned}$$
(88)

In the case of \(k=K-2\), we have

$$\begin{aligned} \min _{u_{K-1},u_K}J_{K-2}&=\min _{u_{K-1}}{\mathbb {E}}\Big \{u_{K-2}'Qu_{K-2}-2u'_{K-2}Q{\hat{x}}_{K|K-3}+{{\hat{x}}_{K|K-3}}'Q{\hat{x}}_{K|K-3}\nonumber \\&\quad +\sum ^2_{n=1}{\hat{x}}'_K|^{K-n}_{K-n-1}R{\hat{x}}_K|^{K-n}_{K-n-1}+\min _{u_{K}}J_{K-1}\Big \}. \end{aligned}$$
(89)

It together with (88) means that one only needs to resolve

$$\begin{aligned}&\min _{u_{K-1}}{\mathbb {E}}\Big \{u_{K-2}'Qu_{K-2}+u_{K-1}'T_Ku_{K-1}-2u'_{K-2}Q{\hat{x}}_{K|K-3}-2u_{K-1}'S_K{\hat{x}}_{K|K-2}\nonumber \\&\quad +{\hat{x}}_{K|K-3}'(Q+M^2_{K}){\hat{x}}_{K|K-3}+\sum ^{2}_{n=1}{\hat{x}}'_{K}|^{K-n}_{K-n-1}(R+M^n_{K}){\hat{x}}_{K}|^{K-n}_{K-n-1}\nonumber \\&\quad +\eta tr(R+M^1_{K+1})+\eta tr(R)\Big \}. \end{aligned}$$
(90)

Because the right hand of (81) can be written as

$$\begin{aligned}&\min _{u_K}{\mathbb {E}}\Big \{u_{K-1}'Qu_{K-1}+u_K'T_{K+1}u_K-2u'_{K-1}Q{\hat{x}}_{K+1|K-2}\nonumber \\&\quad -2u_K'S_{K+1}A{\hat{x}}_{K+1|K-1}+{\hat{x}}_{K+1|K-2}'(Q+M^2_{K+1}){\hat{x}}_{K+1|K-2}\nonumber \\&\quad +\sum ^{2}_{n=1}{\hat{x}}'_{K+1}|^{K+1-n}_{K-n}(R+M^n_{K+1}){\hat{x}}_{K}|^{K+1-n}_{K-n}+\eta tr(R)\Big \}, \end{aligned}$$
(91)

which has the same form of (90), thus we complete the induction argument. The optimal cost of (13) is as in (25).

Proof of Lemma 3.1

It follows from the definition in Notations that for \(i=1,\ldots ,d\) and \(j=1,\ldots ,d-1\), we have

$$\begin{aligned} {\hat{u}}_{k|k-i}&={\mathbb {E}}\{u_k|{\mathcal {F}}_{k-i}\}, \end{aligned}$$
(92)
$$\begin{aligned} {\hat{u}}_{k}|^{k-j}_{k-1-j}&={\mathbb {E}}\{u_k|{\mathcal {F}}_{k-j}\}-{\mathbb {E}}\{u_k|{\mathcal {F}}_{k-j-1}\}. \end{aligned}$$
(93)

From Theorem 4.1.13 in [18], (93) can be rewritten as

$$\begin{aligned} {\hat{u}}_{k}|^{k-j}_{k-1-j}={\mathbb {E}}\{u_k|{\mathcal {F}}_{k-j}\}-{\mathbb {E}}\{{\mathbb {E}}\{u_k|{\mathcal {F}}_{k-j}\}|{\mathcal {F}}_{k-j-1}\}. \end{aligned}$$
(94)

Theorem 4.1.14 in [18] implies that for every \({\mathcal {F}}_{k-1-j}\)-measurable W, \(j=1,2,\ldots ,d-1\), there holds

$$\begin{aligned} {\mathbb {E}}\{W'{\mathbb {E}}\{u_k|{\mathcal {F}}_{k-j}\}|{\mathcal {F}}_{k-j-1}\}=W'{\mathbb {E}}\{{\mathbb {E}}\{u_k|{\mathcal {F}}_{k-j}\}|{\mathcal {F}}_{k-j-1}\}. \end{aligned}$$
(95)

Taking expectation yields

$$\begin{aligned} {\mathbb {E}}\{W'({\mathbb {E}}\{u_k|{\mathcal {F}}_{k-j}\}-{\mathbb {E}}\{{\mathbb {E}}\{u_k|{\mathcal {F}}_{k-j}\}|{\mathcal {F}}_{k-j-1}\})\}=0. \end{aligned}$$
(96)

Associating (94) with (96), we know that \({\hat{u}}_{k}|^{k-j}_{k-1-j}\) is orthogonal to any \({\mathcal {F}}_{k-1-j}\)-measurable vector. It is evident \({\hat{u}}_{k|k-i}\) are \({\mathcal {F}}_{k-1-j}\)-measurable as \( j\le i\), so \({\hat{u}}_{k|k-i}\) and \({\hat{u}}_{k}|^{k-j}_{k-1-j}\) are orthogonal for \(1\le j<i\), i.e.,

$$\begin{aligned} {\mathbb {E}}\big \{{\hat{u}}_{k|k-i}'{\hat{u}}_{k}|^{k-j}_{k-1-j}\big \}=0, 1\le j<i. \end{aligned}$$
(97)

Similarly, \({\hat{u}}_{k}|^{k-j}_{k-1-j}\) is orthogonal to any \({\mathcal {F}}_{k-1-j}\)-measurable vector. From \({\mathcal {F}}_{k-i}\subseteq {\mathcal {F}}_{k-j-1}\subset {\mathcal {F}}_{k-j}\), \({\hat{u}}_{k}|^{k-i}_{k-1-i}\) with \(j<i\le d\) is \({\mathcal {F}}_{k-j-1}\)-measurable. Accordingly, there holds

$$\begin{aligned} {\mathbb {E}}\big \{{\hat{u}}'_{k}|^{k-j}_{k-1-j}{\hat{u}}_{k}|^{k-i}_{k-1-i}\big \}=0, j<i\le d. \end{aligned}$$
(98)

Now (97) together with (98) shows that \({\hat{u}}_{k|k-1-d}\), \({\hat{u}}_{k}|^{k-1}_{k-2},\ldots , {\hat{u}}_{k}|^{k-d}_{k-d-1}\) are orthogonal to each other.

Proof of Theorem 3.1

Considering the truncated cost function (59) for any \(k,1\le k\le K\), we have

$$\begin{aligned} {\bar{J}}_k&=\sum ^K_{j=k}{\mathbb {E}}\{(u_j-{\hat{x}}_{j+d|j-1})'Q(u_j-{\hat{x}}_{j+d|j-1})\nonumber \\&\quad +({\hat{x}}_{j+d|j-1}-x_{j+d})'R({\hat{x}}_{j+d|j-1}-x_{j+d})\}. \end{aligned}$$
(99)

Consistent with (99), we assume that the prediction process by the economic agents ends at \(k=K\). Therefore, we set \(u_k=0\) for \(k>K\). From the system (11), (99) can be written as

$$\begin{aligned} {\bar{J}}_k&={\mathbb {E}}\Big \{\sum ^K_{j=k}u_j'Qu_j+\sum ^{K-d+1}_{j=k}[-2u_j'Q{\hat{x}}_{j+d|j-1}\nonumber \\&\quad +x_{j+d}'Rx_{j+d} +{{\hat{x}}_{j+d|j-1}}'(Q-R){\hat{x}}_{j+d|j-1}]\nonumber \\&\quad +\sum ^K_{j=K-d+2}[-2u_j'X_j{\hat{x}}_{K+1|j-1}+x_{K+1}'Y_jx_{K+1}\nonumber \\&\quad +{{\hat{x}}_{K+1|j-1}}'Z_j{\hat{x}}_{K+1|j-1}+\eta tr(H_j)]\Big \}, \end{aligned}$$
(100)

where \(X_j=QA^{d-K-1+j}\), \(Y_j=A'Y_{j-1}A+\tau A_0'Y_{j-1}A_0\) with the initial value \(Y_{K-d+1}=R\), \(Z_j=(A^{d-K-1+j})'(Q-R)A^{d-K-1-j}\), and \(H_j=\sum ^{j+d-1}_{k=K+1}\eta (A^{d-k-1+j})'RA^{d-k-1+j}\). Now, we handle the optimization problem by dynamic programming procedure.

In the case of \(k=K-d+1\), we get

$$\begin{aligned} \min _{u_K}{\bar{J}}_{K-d+1}&=\min _{u_K}{\mathbb {E}}\Big \{\sum ^K_{j=K-d+1}(u_j'Qu_j-2u_j'X_j{\hat{x}}_{K+1|j-1}+x_{K+1}'Y_jx_{K+1}\nonumber \\&\quad +{{\hat{x}}_{K+1|j-1}}'Z_j{\hat{x}}_{K+1|j-1})+\sum ^K_{j=K-d+2}\eta tr(H_j)\Big \}, \end{aligned}$$
(101)

by virtue of (11) and (101), one has

$$\begin{aligned} \min _{u_K}{\bar{J}}_{K-d+1}&=\min _{u_K}{\mathbb {E}}\Big \{\sum ^{K}_{j=K-d+1}[{u_j}'Qu_j-2{u_j}'X_jA{\hat{x}}_{K|j-1}-2{u_j}'X_jB{\hat{u}}_{K|j-1}\nonumber \\&\quad +x_K'(A'Y_jA+\tau A_0Y_jA_0)x_K+u_K'(B'Y_jB+\tau B_0Y_jB_0)u_K\nonumber \\&\quad +2u_K'(B'Y_jA+\tau B_0Y_jA_0)x_K+{{\hat{x}}_{K|j-1}}'A'Z_jA{\hat{x}}_{K|j-1}\nonumber \\&\quad +{{\hat{u}}_{K|j-1}}'B'Z_jB{\hat{u}}_{K|j-1}+2{{\hat{u}}_{K|j-1}}'B'Z_jA{\hat{x}}_{K|j-1}]+\sum ^{K}_{j=K-d+2}\eta tr(H_j)\Big \}. \end{aligned}$$
(102)

According to (61), \({\hat{u}}_{K|j-1}\), \({\hat{x}}_{K|j-1}\) and \(u_j,j=K-d+1,\ldots ,K\) in (102) can be orthogonally decomposed as

$$\begin{aligned} {\hat{u}}_{K|j-1}&={\hat{u}}_{K|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{u}}_K|^{K-n}_{K-n-1}, \end{aligned}$$
(103)
$$\begin{aligned} {\hat{x}}_{K|j-1}&={\hat{x}}_{K|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{x}}_K|^{K-n}_{K-n-1}, \end{aligned}$$
(104)
$$\begin{aligned} u_j&={\hat{u}}_{j|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{u}}_j|^{K-n}_{K-n-1}. \end{aligned}$$
(105)

Inserting (103)-(105) into (102) yields

$$\begin{aligned} {\bar{J}}_{K-d+1}&={\mathbb {E}}\Big \{{{\hat{u}}_{K|K-d}}'\varUpsilon ^{d}_K{\hat{u}}_{K|K-d}+2{{\hat{u}}_{K|K-d}}'\Big (\varPsi ^{d}_K{\hat{x}}_{K|K-d}-\sum ^{K-1}_{j=K-d+1}B'(A^{d-K-1+j})'\nonumber \\&\quad \times Q{\hat{u}}_{j|K-d}\Big )+{{\hat{x}}_{K|K-d}}'[A'(Q+M^d_{K+1})A+\tau A_0'(R+M^1_{K+1})A_0]{\hat{x}}_{K|K-d}\nonumber \\&\quad +\sum ^{d-1}_{n=1}{\hat{u}}'_{K}|^{K-n}_{K-n-1}\varUpsilon ^n_K{\hat{u}}_{K}|^{K-n}_{K-n-1}+2\sum ^{d-1}_{n=1}{\hat{u}}'_{K}|^{K-n}_{K-n-1}\Big (\varPsi ^n_K{\hat{x}}_{K}|^{K-n}_{K-n-1}\nonumber \\&\quad -\sum ^{K-1}_{j=K-n+1}B'(A^{d-K-1+j})'Q{\hat{u}}_j|^{K-n}_{K-n-1}\Big )+\sum ^{d-1}_{n=1}{\hat{x}}'_{K}|^{K-n}_{K-n-1}[A'(R+M^{n+1}_{K+1})A\nonumber \\&\quad +\tau A_0'(R+M^1_{K+1})A_0]{\hat{x}}_{K}|^{K-n}_{K-n-1}\nonumber \\&\quad -2\sum ^{K-1}_{j=K-d+1}\Big ({{\hat{u}}_{j|K-d}}'S^{d,j}_{K+1}A{\hat{x}}_{K|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{u}}'_j|^{K-n}_{K-n-1}S^{n+1,j}_{K+1}A{\hat{x}}_{K}|^{K-n}_{K-n-1}\Big )\nonumber \\&\quad +\sum ^{K-1}_{j=K-d+1}\Big ({{\hat{u}}_{j|K-d}}'T^{d,j}_{K+1}{\hat{u}}_{j|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{u}}'_j|^{K-n}_{K-n-1}T^{n+1,j}_{K+1}{\hat{u}}_j|^{K-n}_{K-n-1}\Big )\nonumber \\&\quad +\eta tr(R+M^1_{K+1})+\sum ^{K}_{j=K-d+2}\eta tr(H_j)\Big \}, \end{aligned}$$
(106)

where we have used the equalities (64)-(65) with \(k=K\) and the initial value \(M^{n}_{K+1}=\sum ^K_{j=K-d+2}Y_j+\sum ^K_{j=K-n+2}Z_j\), \(T^{n,j}_{K+1}=Q\) and \(S^{n,j}_{K+1}=X_j\).

By completion of squares over \({\hat{u}}_{K|K-d}\) and \({\hat{u}}_{K}|^{K-n}_{K-n-1},i=1,2,\ldots ,d-1\) in (106) results in

$$\begin{aligned} {\bar{J}}_{K-d+1}&={\mathbb {E}}\Big \{({\hat{u}}_{K|K-d}-\bar{{\hat{u}}}_{K|K-d})'\varUpsilon ^{d}_{K}({\hat{u}}_{K|K-d}-\bar{{\hat{u}}}_{K|K-d})\nonumber \\&\quad +\sum ^{d-1}_{n=1}({\hat{u}}_{K}|^{K-n}_{K-n-1}-\bar{{\hat{u}}}_{K}|^{K-n}_{K-n-1})'\varUpsilon ^n_{K}({\hat{u}}_{K}|^{K-n}_{K-n-1}-\bar{{\hat{u}}}_{K}|^{K-n}_{K-n-1})\nonumber \\&\quad +{{\hat{x}}_{K|K-d}}'M^d_{K}{\hat{x}}_{K|K-d}+\sum ^{d-1}_{n=1}{\hat{x}}'_{K}|^{K-n}_{K-n-1}M^n_{K}{\hat{x}}_{K}|^{K-n}_{K-n-1}\nonumber \\&\quad -2\sum ^{K-1}_{j=K-d+1}\Big ({{\hat{u}}_{j|K-d}}'S^{d,j}_K{\hat{x}}_{K|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{u}}'_j|^{K-n}_{K-n-1}S^{n,j}_K{\hat{x}}_{K}|^{K-n}_{K-n-1}\Big )\nonumber \\&\quad +\sum ^{K-1}_{j=K-d+1}\Big ({{\hat{u}}_{j|K-d}}'T^{d,j}_K{\hat{u}}_{j|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{u}}'_j|^{K-n}_{K-n-1}T^{n,j}_K{\hat{u}}_j|^{K-n}_{K-n-1}\Big )\nonumber \\&\quad +\eta tr(R+M^1_{K+1})+\sum ^{K}_{j=K-d+2}\eta tr(H_j)\Big \}, \end{aligned}$$
(107)

where

$$\begin{aligned} \bar{{\hat{u}}}_{K|K-d}&=-L^d_{K}{\hat{x}}_{K|K-d}-\sum ^{K-1}_{j=K-d+1}K^{d,j}_{K}{\hat{u}}_{j|K-d}, \end{aligned}$$
(108)
$$\begin{aligned} \bar{{\hat{u}}}_{K}|^{K-n}_{K-n-1}&=-L^n_{K}{\hat{x}}_{K}|^{K-n}_{K-n-1}-\sum ^{K-1}_{j=K-n+1}K^{n,j}_{K}{\hat{u}}_{j}|^{K-n}_{K-n-1}. \end{aligned}$$
(109)

In the above, (62)-(67), and (70)-(71) are utilized with \(k=K\). From (108)-(109), the optimal \(u_K\) admits (46) with \(k=K\). The optimal cost of (107) is given as

$$\begin{aligned} \min _{u_K}{\bar{J}}_{K-d+1}&={\mathbb {E}}\Big \{\sum ^{K-1}_{j=K-d+1}\Big ({{\hat{u}}_{j|K-d}}'T^{d,j}_K{\hat{u}}_{j|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{u}}'_j|^{K-n}_{K-n-1}T^{n,j}_K{\hat{u}}_j|^{K-n}_{K-n-1}\Big )\nonumber \\&\quad -2\sum ^{K-1}_{j=K-d+1}\Big ({{\hat{u}}_{j|K-d}}'S^{d,j}_K{\hat{x}}_{K|K-d}+\sum ^{d-1}_{n=K-j+1}{\hat{u}}'_j|^{K-n}_{K-n-1}S^{n,j}_K{\hat{x}}_{K}|^{K-n}_{K-n-1}\Big )\nonumber \\&\quad +{{\hat{x}}_{K|K-d}}'M^d_{K}{\hat{x}}_{K|K-d}+\sum ^{d-1}_{n=1}{\hat{x}}'_{K}|^{K-n}_{K-n-1}M^n_{K}{\hat{x}}_{K}|^{K-n}_{K-n-1}\nonumber \\&\quad +\eta tr(R+M^1_{K+1})+\sum ^{K}_{j=K-d+2}\eta tr(H_j)\Big \}. \end{aligned}$$
(110)

In the case of \(k=K-d\), we have

$$\begin{aligned} \min _{u_{K-1},u_K}{\bar{J}}_{K-d}&=\min _{u_{K-1}}{\mathbb {E}}\Big \{{u_{K-d}}'Qu_{K-d}-2u_{K-d}Q{\hat{x}}_{K|K-d-1}+{{\hat{x}}_{K|K-d-1}}'Q{\hat{x}}_{K|K-d-1}\nonumber \\&\quad +\sum ^d_{n=1}{\hat{x}}'_K|^{K-n}_{K-n-1}R{\hat{x}}_K|^{K-n}_{K-n-1}+\min _{u_{K}}J_{K-d+1}\Big \}. \end{aligned}$$
(111)

This, together with (110), means that one only needs to resolve

$$\begin{aligned}&\min _{u_{K-1}}{\mathbb {E}}\Big \{\sum ^{K-1}_{j=K-d}\Big ({{\hat{u}}_{j|K-d-1}}'T^{d,j}_K{\hat{u}}_{j|K-d-1}+\sum ^{d}_{n=K-j+1}{\hat{u}}'_j|^{K-n}_{K-n-1}T^{n,j}_K{\hat{u}}_j|^{K-n}_{K-n-1}\Big )\nonumber \\&\quad -2\sum ^{K-1}_{j=K-d}\Big ({{\hat{u}}_{j|K-d-1}}'S^{d,j}_K{\hat{x}}_{K|K-d-1}+\sum ^{d}_{n=K-j+1}{\hat{u}}'_j|^{K-n}_{K-n-1}S^{n,j}_K{\hat{x}}_{K}|^{K-n}_{K-n-1}\Big )\nonumber \\&\quad +{{\hat{x}}_{K|K-d-1}}'(Q+M^d_{K}){\hat{x}}_{K|K-d-1}+\sum ^{d}_{n=1}{\hat{x}}'_{K}|^{K-n}_{K-n-1}(R+M^n_{K}){\hat{x}}_{K}|^{K-n}_{K-n-1}\nonumber \\&\quad +\eta tr(R+M^1_{K+1})+\sum ^{K}_{j=K-d+2}\eta tr(H_j)\Big \}, \end{aligned}$$
(112)

where \(S^{d,K-d}_K=T^{d,K-d}_K=Q\). Because the right hand of (101) can be written as

$$\begin{aligned}&\min _{u_{K-1}}{\mathbb {E}}\Big \{\sum ^{K}_{j=K-d+1}\Big ({{\hat{u}}_{j|K-d}}'T^{d,j}_{K+1}{\hat{u}}_{j|K-d}+\sum ^{d}_{n=K-j+2}{\hat{u}}'_j|^{K+1-n}_{K-n}T^{n,j}_{K+1}{\hat{u}}_j|^{K+1-n}_{K-n}\Big )\nonumber \\&\quad -2\sum ^{K}_{j=K-d+1}\Big ({{\hat{u}}_{j|K-d}}'S^{d,j}_{K+1}{\hat{x}}_{K|K-d}+\sum ^{d}_{n=K-j+2}{\hat{u}}'_j|^{K+1-n}_{K-n}S^{n,j}_{K+1}{\hat{x}}_{K}|^{K+1-n}_{K-n}\Big )\nonumber \\&\quad +{{\hat{x}}_{K+1|K-d}}'(Q+M^d_{K+1}){\hat{x}}_{K+1|K-d}+\sum ^{d}_{n=1}{\hat{x}}'_{K+1}|^{K+1-n}_{K-n}(R+M^n_{K+1}){\hat{x}}_{K+1}|^{K+1-n}_{K-n}\nonumber \\&\quad +\sum ^{K}_{j=K-d+2}\eta tr(H_j)\Big \}, \end{aligned}$$
(113)

which has the same form of (112), thus we complete the induction argument.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Wang, H., Zhang, H. et al. Rational Expectations Models with Multiplicative Noise. J Optim Theory Appl 199, 233–257 (2023). https://doi.org/10.1007/s10957-023-02275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02275-4

Keywords

Navigation