Skip to main content
Log in

Continuous-Time Markowitz’s Mean-Variance Model Under Different Borrowing and Saving Rates

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study Markowitz’s mean-variance portfolio selection problem in a continuous-time Black–Scholes market with different borrowing and saving rates. The associated Hamilton–Jacobi–Bellman equation is fully nonlinear. Using a delicate partial differential equation and verification argument, the value function is proven to be \(C^{3,2}\) smooth. It is also shown that there are a borrowing boundary and a saving boundary which divide the entire trading area into a borrowing-money region, an all-in-stock region, and a saving-money region in ascending order. The optimal trading strategy turns out to be a mixture of continuous-time strategy (as suggested by most continuous-time models) and discontinuous-time strategy (as suggested by models with transaction costs): one should put all the wealth in the stock in the middle all-in-stock region and continuously trade it in the other two regions in a feedback form of wealth and time. It is never optimal to short sale the stock. Numerical examples are also presented to verify the theoretical results and to give more financial insights beyond them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bergman, Y.: Option pricing with divergent borrowing and lending rates, Working paper, Brown University (1991)

  2. Bielecki, T.R., Jin, H.Q., Pliska, S.R., Zhou, X.Y.: Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math. Finance 15, 213–244 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Cerny, A., Kallsen, J.: On the structure of general mean-variance hedging strategies. Ann. Probab. 35, 1479–1531 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Cerny, A., Czichowsky, C., Kallsen, J.: Numeraire-invariant quadratic hedging and mean-variance portfolio allocation, working paper, Available at https://doi.org/10.2139/ssrn.3944947 (2021)

  5. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. AMS 277, 1–42 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Cvitanic, J., Karatzas, I.: Hedging contingent claims with constrained portfolios. Ann. Appl. Probab. 3, 652–681 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Czichowsky, C., Schweizer, M.: Cone-constrained continuous-time Markowitz problems. Ann. Appl. Probab. 23, 427–857 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Dai, M., Xu, Z.Q., Zhou, X.Y.: Continuous-time Markowitz’s model with transaction costs. SIAM J. Financ. Math. 1, 96–125 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Dai, M., Yi, F.H.: Finite-horizon optimal investment with transaction costs: a parabolic double obstacle problem. J. Differ. Equ. 246, 1445–1469 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Dai, M., Yi, F.: Finite horizon optimal investment with transaction costs: a parabolic double obstacle problem. J. Differ. Equ. 246, 1445–1469 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Davis, M.H.A., Norman, A.: Portfolio selection with transaction costs. Math. Oper. Res. 15, 676–713 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Delbaen, F., Schachermayer, W.: The variance-optimal martingale measure for continuous processes. Bernoulli 81–105, 1996 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Duffie, D., Richardson, H.: Mean-variance hedging in continuous time. Ann. Appl. Probab. 1, 1–15 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Evans, L.C.: Partial Differential Equations. AMS, (2016)

  15. Fleming, W.H., Zariphopoulou, T.: An optimal consumption and investment model with borrowing constraints. Math. Oper. Res. 16, 802–822 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Fu, C., Lari-Lavassani, A., Li, X.: Dynamic mean-variance portfolio selection with borrowing constraint. Eur. J. Oper. Res. 200, 312–319 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Gourieroux, C., Laurent, J.P., Pham, H.: Mean-variance hedging and numeraire. Math. Financ. 8, 179–200 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Guan, C.: On a free boundary problem for an optimal investment problem with different interest rates. Commun. Math. Sci. 18(1), 31–54 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Hou, D., Xu, Z.Q.: A robust Markowitz mean-variance portfolio selection model with an intractable claim. SIAM J. Financ. Math. 7, 124–151 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Hu, Y., Shi, X., Xu, Z.Q.: Constrained stochastic LQ control with regime switching and application to portfolio selection. Ann. Appl. Probab. 32, 426–460 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Hu, Y., Shi, X., Xu, Z.Q.: Constrained stochastic LQ control on infinite time horizon with regime switching. ESAIM: Control Optim. Calc. Variat. 28, 5 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Hu, Y., Zhou, X.Y.: Constrained stochastic LQ control with random coefficients, and application to portfolio selection. SIAM J. Control. Optim. 44, 444–466 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, Berlin (1998)

    MATH  Google Scholar 

  24. Kohlmann, M., Tang, S.: Global adapted solution of one-dimensional backward stochastic Riccati equations with application to the mean-variance hedging. Stochastic Process. Appl. 97, 255–288 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Korn, R.: Option pricing in a model with a higher interest rate for borrowing than for lending, Working paper (1992)

  26. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  27. Li, X., Xu, Z.Q.: Continuous-time mean-variance portfolio selection with constraints on wealth and portfolio. Oper. Res. Lett. 44, 729–736 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Li, X., Zhou, X.Y., Lim, A.E.B.: Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J. Contl. Opt. 40, 1540–1555 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  30. Lim, A., Zhou, X.Y.: Mean-variance portfolio selection with random parameters in a complete market. Math. Oper. Res. 27, 101–120 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Lv, S., Wu, Z., Yu, Z.: Continuous-time mean-variance portfolio selection with random horizon in an incomplete market. Autom. 69, 176–180 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Mao, X.R.: Stochastic Differential Equations and Applications, 2nd edn. Woodhead Publishing, Sawston (2008)

    Google Scholar 

  33. Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  34. Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. Wiley, New York (1959)

    Google Scholar 

  35. Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer-Verlag, Berlin (2009)

    MATH  Google Scholar 

  36. Pham, H.: On quadratic hedging in continuous time. Math. Methods Oper. Res. 51, 315–339 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Richardson, H.R.: A minimum variance result in continuous trading portfolio optimization. Manage. Sci. 35, 1045–1055 (1989)

    MathSciNet  MATH  Google Scholar 

  38. Schweizer, M.: Mean-variance hedging for general claims. Ann. Appl. Probab. 2, 171–179 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Schweizer, M.: Mean-variance hedging. Encycl. Quant. Finance (2010). https://doi.org/10.1002/9780470061602

    Article  MATH  Google Scholar 

  40. Xia, J.: Mean-variance portfolio choice: quadratic partial hedging. Math. Finance 15, 533–538 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Xiong, J., Xu, Z.Q., Zheng, J.: Mean-variance portfolio selection under partial information with drift uncertainty. Quantit. Finance 21, 1461–1473 (2021)

    MathSciNet  Google Scholar 

  42. Xiong, J., Zhou, X.Y.: Mean-variance portfolio selection under partial information. SIAM J. Contl. Opt. 46, 156–175 (2007)

  43. Xu, W., Chen, S.: Optimal consumption/portfolio choice with borrowing rate higher than deposit rate. ANZIAM J. 39(4), 449–462 (1998)

    MathSciNet  MATH  Google Scholar 

  44. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    MATH  Google Scholar 

  45. Yu, Z.: Continuous-time mean-variance portfolio selection with random horizon. Appl. Math. Optim. 68, 333–359 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Opt. 42, 19–33 (2000)

    MathSciNet  MATH  Google Scholar 

  47. Zhou, X.Y., Yin, G.: Markowitz mean-variance portfolio selection with regime switching: a continuous-time model. SIAM J. Contl. Opt. 42, 1466–1482 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and anonymous referees for their valuable comments and suggestions that have improved the quality of the paper. C. Guan is partially supported by NSF of Guangdong Province of China (No. 2021A1515012031 and No. 2022A1515010263) and NNSF of China (No. 11901244). X. Shi is partially supported by NSFC (No. 11801315, and No. 71871129), NSF of Shandong Province (No. ZR2018QA001), The Colleges and Universities Youth Innovation Technology Program of Shandong Province (No. 2019KJI011), Shandong University of Finance and Economics International Cooperation Research Platform. Z.Q. Xu is partially supported by NSFC (No. 11971409), The Hong Kong RGC (GRF 15202421 and 15204622), The PolyU-SDU Joint Research Centre on Financial Mathematics, The CAS AMSS-PolyU Joint Laboratory of Applied Mathematics, The Research Centre for Quantitative Finance (1-CE03), The Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Shi.

Additional information

Communicated by Xiaoqi Yang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 5.1

Appendix: Proof of Theorem 5.1

In this section, we prove Theorem 5.1 by approximation method.

Firstly, for each fixed \(0<\varepsilon <1\), define a continuous function

$$\begin{aligned} \Gamma _\varepsilon (\xi ,\eta ):=A\Big (\frac{\xi }{\eta +\varepsilon }\Big ),\quad (\xi ,\eta )\in (-\infty ,+\infty )\times [0,+\infty ). \end{aligned}$$

Note that

$$\begin{aligned} {\partial }_\xi \Gamma _\varepsilon (\xi ,\eta )=A^{\prime }\Big (\frac{\xi }{\eta +\varepsilon }\Big ) \frac{1}{\eta +\varepsilon }= \left\{ \begin{array}{ll} -\frac{1}{\eta +\varepsilon }\in [-\frac{1}{\varepsilon },0),&{}\quad \text{ if }\;a_2<-\frac{\xi }{\eta +\varepsilon }<a_1,\\ 0,&{}\quad \text{ if }\;-\frac{\xi }{\eta +\varepsilon }>a_1 \;\hbox {or}\; -\frac{\xi }{\eta +\varepsilon }<a_2, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} {\partial }_\eta \Gamma _\varepsilon (\xi ,\eta )= & {} A^{\prime }\Big (\frac{\xi }{\eta +\varepsilon }\Big ) \frac{-\xi }{(\eta +\varepsilon )^2}\\ {}= & {} \left\{ \begin{array}{ll} \frac{\xi }{\eta +\varepsilon }\frac{1}{\eta +\varepsilon }\in [-\frac{a_1}{\varepsilon },0),&{}\quad \text{ if }\; a_2<-\frac{\xi }{\eta +\varepsilon }<a_1,\\ 0,&{}\quad \text{ if }\; -\frac{\xi }{\eta +\varepsilon }>a_1\;\hbox {or}\;-\frac{\xi }{\eta +\varepsilon }<a_2, \end{array} \right. \end{aligned}$$

so the function \(\Gamma _\varepsilon (\cdot ,\cdot )\) is Lipschitz continuous in \((-\infty ,+\infty )\times [0,+\infty ) \). Moreover, for each fixed \(c>0\), \({\partial }_\xi \Gamma _\varepsilon (\xi ,\eta )\) and \({\partial }_\eta \Gamma _\varepsilon (\xi ,\eta )\) are uniformly bounded for all \((\xi ,\eta , \varepsilon )\in (-\infty ,+\infty )\times [c,+\infty )\times [0,1]\).

Now, consider an approximation equation in a bounded domain \(Q_T^N:=(-N,N)\times [0,T]\),

$$\begin{aligned} \begin{array}{ll} &{}w^{\varepsilon ,N}_s-\frac{1}{2}\sigma ^2A^2\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )w^{\varepsilon ,N}_{zz} +\Big (\mu -\frac{1}{2}\sigma ^2A^2\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big ) -\sigma ^2A\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )\Big )w^{\varepsilon ,N}_z\\ &{}+\Big (\mu -\sigma ^2A\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )\Big )w^{\varepsilon ,N}=0 \quad \hbox {in} \quad Q_T^N,\\ &{}(w^{\varepsilon ,N}-w^{\varepsilon ,N}_z)(-N,s)=-e^{-r_2 s }d,\quad w^{\varepsilon ,N}_z(N,s)=\frac{1}{2} e^{\theta _1 s } e^N,\quad s\in [0,T],\\ &{}w^{\varepsilon ,N}(z,0)=\frac{1}{2}e^z-d,\quad -N<z<N, \end{array} \end{aligned}$$
(54)

The Leray-Schauder fixed point theorem (see [14] Theorem 4, p.541) and embedding theorem (see [29] Theorem 6.8) imply the existence of \(C^{1+\alpha ,\frac{1+\alpha }{2}}\big (\overline{Q_T^N}\big )\) (for some \(\alpha \in (0,1)\)) solution to the problem (54). Moreover, the Schauder estimation (see [29] Theorem 4.23) implies

$$\begin{aligned} w^{\varepsilon ,N}\in C^{2+\alpha ,1+\frac{\alpha }{2}}\big (\overline{Q_T^N}\big ). \end{aligned}$$

In the proceeding proof, we will frequently use the following fact without claim:

$$\begin{aligned} 0<a_2\le A(\xi )\le a_1,\quad |A'(\xi )| \le 1,\quad a_2\le |A'(\xi )\xi | \le a_1,\quad a_2^2\le |A'(\xi )\xi ^2| \le a_1^2. \end{aligned}$$

We first establish the estimates

$$\begin{aligned} \frac{1}{2} e^{\theta _2 s } e^z-e^{-r_1 s } d\le w^{\varepsilon ,N} \le \frac{1}{2} e^{\theta _1 s } e^z-e^{-r_2 s }d. \end{aligned}$$
(55)

Denote

$$\begin{aligned} \psi (z,s)=\frac{1}{2} e^{\theta _2 s } e^z-e^{-r_1 s } d,\quad A(\cdot \cdot )=A\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big ). \end{aligned}$$

Using the definitions of \(\theta _2\), \(a_1\) and \(a_2\) as well as the bounds on A and \(A'\), we get

$$\begin{aligned}{} & {} \!\!\!\psi _s-\frac{1}{2}\sigma ^2A^2(\cdot \cdot )\psi _{zz}+\Big (\mu -\frac{1}{2}\sigma ^2A^2(\cdot \cdot ) -\sigma ^2A(\cdot \cdot )\Big )\psi _z+\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )\psi \\= & {} \frac{1}{2}e^{\theta _2 s } e^z\Big (\theta _2-\frac{1}{2}\sigma ^2A^2(\cdot \cdot ) +\Big (\mu -\frac{1}{2}\sigma ^2A^2(\cdot \cdot )-\sigma ^2A(\cdot \cdot )\Big )+\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )\Big )\\{} & {} +e^{-r_1 s } d\Big (r_1-(\mu -\sigma ^2A(\cdot \cdot ))\Big )\\\le & {} \frac{1}{2}e^{\theta _2 s } e^z\Big (\theta _2-\sigma ^2a_2^2-2\sigma ^2a_2+2\mu \Big ) +e^{-r_1 s } d\Big (r_1-(\mu -\sigma ^2a_1)\Big )\\= & {} 0. \end{aligned}$$

Notice \(\theta _1>\theta _2\), so

$$\begin{aligned}&\psi (z,0)=\frac{1}{2}e^z-d=w^{\varepsilon ,N}(z,0), -N<z<N, \nonumber \\&(\psi -\psi _z)(-N,s)=-e^{-r_1 s } d\le -e^{-r_2 s }d=(w^{\varepsilon ,N}-w^{\varepsilon ,N}_z)(-N,s), s\in [0,T], \nonumber \\&\psi _z(N,s)=\frac{1}{2} e^{\theta _2 s } e^N\le \frac{1}{2} e^{\theta _1 s } e^N=w^{\varepsilon ,N}_z(N,s), s\in [0,T]. \end{aligned}$$

Applying the comparison principle for linear equations, the first inequality in (55) is established.

Similarly, let

$$\begin{aligned} \Psi (z,s)=\frac{1}{2}e^{\theta _1 s }e^{z}-e^{-r_2 s }d. \end{aligned}$$

Then by the definitions of \(\theta _1\), \(a_1\) and \(a_2\),

$$\begin{aligned}{} & {} \Psi _s-\frac{1}{2}\sigma ^2A^2(\cdot \cdot )\Psi _{zz}+\Big (\mu -\frac{1}{2}\sigma ^2A^2(\cdot \cdot ) -\sigma ^2A(\cdot \cdot )\Big )\Psi _z+\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )\Psi \\= & {} \frac{1}{2}e^{\theta _1 s }e^{z}\Big (\theta _1-\frac{1}{2}\sigma ^2A^2(\cdot \cdot ) +\Big (\mu -\frac{1}{2}\sigma ^2A^2(\cdot \cdot )-\sigma ^2A(\cdot \cdot )\Big )+\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )\Big )\\{} & {} +e^{-r_2 s }d\Big (r_2-(\mu -\sigma ^2A(\cdot \cdot ))\Big )\\\ge & {} \frac{1}{2}e^{\theta _1 s }e^{z}\Big (\theta _1-\sigma ^2a_1^2-2\sigma ^2a_1+2\mu \Big ) +e^{-r_2 s }d\Big (r_2-(\mu -\sigma ^2a_2)\Big )\\= & {} 0. \end{aligned}$$

Moreover,

$$\begin{aligned}&\Psi (z,0)=\frac{1}{2}e^{z}-d=w^{\varepsilon ,N}(z,0), -N<z<N, \nonumber \\&(\Psi -\Psi _z)(-N,s)=-e^{-r_2 s }d=(w^{\varepsilon ,N}-w^{\varepsilon ,N}_z)(-N,s), s\in [0,T], \nonumber \\&\Psi _z(N,s)=\frac{1}{2} e^{\theta _1 s } e^N=w^{\varepsilon ,N}_z(N,s), s\in [0,T], \end{aligned}$$

by the comparison principle, the second inequality in (55) is established.

Due to the setting of boundary conditions, we cannot establish \(w^{\varepsilon ,N}_z\ge \frac{1}{2}e^{-\kappa s} e^z\). Instead, we first prove

$$\begin{aligned} w^{\varepsilon ,N}_z\ge -e^{-\theta _3 s} d, \end{aligned}$$
(56)

where

$$\begin{aligned} \theta _3=\min \{\mu -\sigma ^2 a_1(a_1+3),r_1\}. \end{aligned}$$

Differentiating the equation in (54) w.r.t. z we have

$$\begin{aligned}&{\partial }_s w^{\varepsilon ,N}_z-\frac{\sigma ^2}{2}{\partial }_z\Big (A^2(\cdot \cdot ){\partial }_zw^{\varepsilon ,N}_z\Big ) +\Big (\mu -\frac{1}{2}\sigma ^2A^2(\cdot \cdot )-\sigma ^2A(\cdot \cdot )\Big ){\partial }_zw^{\varepsilon ,N}_z\\&\quad +\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )w^{\varepsilon ,N}_z\\&\quad -\sigma ^2A'(\cdot \cdot )\Big (\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon } -\frac{w^{\varepsilon ,N}}{(|w^{\varepsilon ,N}_z|+\varepsilon )^2}\textrm{sgn}(w^{\varepsilon ,N}_z)w^{\varepsilon ,N}_{zz}\Big ) \Big (A(\cdot \cdot )+1\Big )w^{\varepsilon ,N}_z\\&\quad -\sigma ^2A'(\cdot \cdot )\Big (\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon } -\frac{w^{\varepsilon ,N}}{(|w^{\varepsilon ,N}_z|+\varepsilon )^2}\textrm{sgn}(w^{\varepsilon ,N}_z)w^{\varepsilon ,N}_{zz}\Big ) w^{\varepsilon ,N}=0. \end{aligned}$$

After reorganizing, we get an equation for \(w^{\varepsilon ,N}_z\) in the divergence form:

$$\begin{aligned}&{\partial }_s w^{\varepsilon ,N}_z-\frac{\sigma ^2}{2}{\partial }_z\Big (A^2(\cdot \cdot ){\partial }_zw^{\varepsilon ,N}_z\Big ) +\Big (-\frac{1}{2}\sigma ^2A^2(\cdot \cdot )-\sigma ^2A(\cdot \cdot )+\mu \Big ){\partial }_zw^{\varepsilon ,N}_z \nonumber \\&+\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )w^{\varepsilon ,N}_z-\sigma ^2A'(\cdot \cdot )\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon } \Big (A(\cdot \cdot )+1\Big )w^{\varepsilon ,N}_z \nonumber \\&+\sigma ^2A'(\cdot \cdot )\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big ) \Big (\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big ) \Big (A(\cdot \cdot )+1\Big )\textrm{sgn}(w^{\varepsilon ,N}_z){\partial }_zw^{\varepsilon ,N}_z \nonumber \\&+\sigma ^2A'(\cdot \cdot ) \Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )^2 \textrm{sgn}(w^{\varepsilon ,N}_z){\partial }_zw^{\varepsilon ,N}_z-\sigma ^2A'(\cdot \cdot ) \frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon } w^{\varepsilon ,N}_z =0. \end{aligned}$$
(57)

It is not hard to check that all the coefficients in (57) are bounded. Denote \(\psi (z,s)=-e^{-\theta _3 s} d\), then

$$\begin{aligned}&{\partial }_s \psi -\frac{\sigma ^2}{2}{\partial }_z\Big (A^2(\cdot \cdot ){\partial }_z \psi \Big ) +\Big (\mu -\frac{1}{2}\sigma ^2A^2(\cdot \cdot )-\sigma ^2A(\cdot \cdot )\Big ){\partial }_z \psi \\&+\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )\psi -\sigma ^2A'(\cdot \cdot )\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon } \Big (A(\cdot \cdot )+1\Big )\psi \\&+\sigma ^2A'(\cdot \cdot )\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big ) \Big (\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big ) \Big (A(\cdot \cdot )+1\Big )\textrm{sgn}(w^{\varepsilon ,N}_z){\partial }_z \psi \\&+\sigma ^2A'(\cdot \cdot ) \Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )^2 \textrm{sgn}(w^{\varepsilon ,N}_z){\partial }_z \psi -\sigma ^2A'(\cdot \cdot ) \frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon } \psi \\&=e^{-\theta _3 s}d\Big (\theta _3-\mu +\sigma ^2A(\cdot \cdot ) +\sigma ^2A'(\cdot \cdot )\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon } \Big (A(\cdot \cdot )+1\Big )\\ {}&\quad +\sigma ^2A'(\cdot \cdot ) \frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon } \Big )\\&\le e^{-\theta _3 s}d (\theta _3-\mu +\sigma ^2 a_1+\sigma ^2 a_1(a_1+1)+\sigma ^2 a_1 )\le 0, \end{aligned}$$

thanks to the definition of \(\theta _3\). Moreover,

$$\begin{aligned}&w^{\varepsilon ,N}_z(z,0)=\frac{1}{2}e^{z}\ge 0\ge \psi (z,0), \nonumber \\&w^{\varepsilon ,N}_z(-N,s)=w^{\varepsilon ,N}(-N,s)+e^{-r_2 s }d>-e^{-r_1 s} d\ge \psi (-N,s), \quad {(\mathrm by \;(55))}\nonumber \\&w^{\varepsilon ,N}_z(N,s)=\frac{1}{2} e^{\theta _1 s } e^N\ge 0\ge \psi (N,s). \end{aligned}$$

Using the comparison principle for divergence forms (see [29] Corollary 6.16), we obtain \(w^{\varepsilon ,N}_z\ge \psi \), giving (56).

We next to prove

$$\begin{aligned} w^{\varepsilon ,N}_z\le \frac{1}{2}e^{k s}e^z. \end{aligned}$$
(58)

Denote \(g^{\varepsilon ,N}(z,s)=e^{-z}w^{\varepsilon ,N}_z(z,s)\). According to (57), we have

$$\begin{aligned}&{\partial }_s g^{\varepsilon ,N}-\frac{\sigma ^2}{2}{\partial }_z\Big (A^2(\cdot \cdot )g^{\varepsilon ,N}_z\Big ) -\sigma ^2A^2(\cdot \cdot )g^{\varepsilon ,N}_z -\frac{\sigma ^2}{2}A^2(\cdot \cdot )g^{\varepsilon ,N} \nonumber \\&-\sigma ^2A(\cdot \cdot )A'(\cdot \cdot ) \Big (\frac{w^{\varepsilon ,N}_z}{w^{\varepsilon ,N}_z+\varepsilon }g-\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big ) {\Big (\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )\textrm{sgn}(w^{\varepsilon ,N}_z)}\big (g^{\varepsilon ,N}_z+g^{\varepsilon ,N} \big )\Big ) \nonumber \\&+\Big (\mu -\frac{1}{2}\sigma ^2A^2(\cdot \cdot )-\sigma ^2A(\cdot \cdot )\Big )\big (g^{\varepsilon ,N}_z+g^{\varepsilon ,N} \big ) \nonumber \\&+\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )g^{\varepsilon ,N} -\sigma ^2A'(\cdot \cdot ) \Big (A(\cdot \cdot )+1\Big )g^{\varepsilon ,N} \nonumber \\&+\sigma ^2A'(\cdot \cdot )\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon } \Big (A(\cdot \cdot )+1\Big )\textrm{sgn}(w^{\varepsilon ,N}_z)\big (g^{\varepsilon ,N}_z+g^{\varepsilon ,N} \big ) \nonumber \\&+\sigma ^2A'(\cdot \cdot ) \Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )^2\textrm{sgn}(w^{\varepsilon ,N}_z)\big (g^{\varepsilon ,N}_z+g^{\varepsilon ,N} \big )-\sigma ^2A'(\cdot \cdot ) \frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon } g^{\varepsilon ,N} =0. \end{aligned}$$
(59)

On the other hand, denote \(\Psi (z,s)=\frac{1}{2}e^{k s}\), then

$$\begin{aligned}&{\partial }_s \Psi -\frac{\sigma ^2}{2}{\partial }_z\Big (A^2(\cdot \cdot )\Psi _z\Big ) -\sigma ^2A^2(\cdot \cdot )\Psi _z-\frac{\sigma ^2}{2}A^2(\cdot \cdot )\Psi \\&-\sigma ^2A(\cdot \cdot )A'(\cdot \cdot ) \Big (\frac{w^{\varepsilon ,N}_z}{w^{\varepsilon ,N}_z+\varepsilon }\Psi -\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big ) {\Big (\frac{w^{\varepsilon ,N}_z}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )\textrm{sgn}(w^{\varepsilon ,N}_z)}\big (\Psi _z+\Psi \big )\Big )\\&+\Big (-\frac{1}{2}\sigma ^2A^2(\cdot \cdot )-\sigma ^2A(\cdot \cdot )+\mu \Big )\big (\Psi _z+\Psi \big )\\&+\Big (\mu -\sigma ^2A(\cdot \cdot )\Big )\Psi -\sigma ^2A'(\cdot \cdot ) \Big (A(\cdot \cdot )+1\Big )\Psi \\&+\sigma ^2A'(\cdot \cdot )\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon } \Big (A(\cdot \cdot )+1\Big )\textrm{sgn}(w^{\varepsilon ,N}_z)\big (\Psi _z+\Psi \big )\\&+\sigma ^2A'(\cdot \cdot ) \Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )^2\textrm{sgn}(w^{\varepsilon ,N}_z) \big (\Psi _z+\Psi \big )-\sigma ^2A'(\cdot \cdot ) \frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon } \Psi \\&\ge \frac{1}{2}e^{ks}{\Big (k-\frac{1}{2}\sigma ^2 a_1^2-\sigma ^2 a_1^2-\frac{1}{2}\sigma ^2 a_1^2-\sigma ^2 a_1(a_1+1)-\sigma ^2 a_1^2-\sigma ^2 a_1\Big )} \ge 0, \end{aligned}$$

thanks to the definition of k. Notice \(k\ge \theta _1\), so

$$\begin{aligned}&g^{\varepsilon ,N} (z,0)=\frac{1}{2}=\Psi (z,0),\nonumber \\&g^{\varepsilon ,N} (-N,s)=e^{N}(w^{\varepsilon ,N}+e^{-r_2 s}d)(-N,s)\le \frac{1}{2} e^{\theta _1 s} \le \frac{1}{2} e^{k s}=\Psi (-N,s),\quad {(\mathrm by \;(55))}\nonumber \\&g^{\varepsilon ,N} (N,s)=\frac{1}{2} e^{\theta _1 s } \le \frac{1}{2} e^{k s}=\Psi (N,s). \end{aligned}$$

Using the comparison principle for divergence forms, we obtain \(g^{\varepsilon ,N}\le \Psi \), proving (58).

Thanks to (55), (56) and (58), for each \(a<b\), when \(N>\max \{|a|,|b|\}\), taking the \(C^{\alpha ,\frac{\alpha }{2}}\) interior estimate (see [29] Theorem 6.33) to the equations in (54) and (57) respectively, we obtain

$$\begin{aligned} \Big |w^{\varepsilon ,N}\Big |_{C^{\alpha ,\frac{\alpha }{2}}([a,b]\times [0,T])}, \quad \Big |w^{\varepsilon ,N}_z\Big |_{C^{\alpha ,\frac{\alpha }{2}}([a,b]\times [0,T])}\;\le C.\end{aligned}$$

where C is independent of \(\varepsilon \) and N. Since \(\Gamma _\varepsilon (\cdot ,\cdot )\) is Lipschitz continuous in \((-\infty ,+\infty )\times [0,+\infty ) \), we have

$$\begin{aligned} \;\bigg |\;A\Big (\frac{w^{\varepsilon ,N}}{|w^{\varepsilon ,N}_z|+\varepsilon }\Big )\; \bigg |\;_{C^{\alpha ,\frac{\alpha }{2}}([a,b]\times [0,T])}\le C_\varepsilon \end{aligned}$$
(60)

i.e. the coefficients in the equation of (54) belong to \(C^{\alpha ,\frac{\alpha }{2}}([a,b]\times [0,T])\), so we can take the Schauder interior estimate to the equation in (54) to get

$$\begin{aligned} \Big |w^{\varepsilon ,N}\Big |_{C^{2+\alpha ,1+\frac{\alpha }{2}}([a,b]\times [0,T])}\;\le C_\varepsilon . \end{aligned}$$
(61)

where the above two \(C_\varepsilon \)s are independent of N. Therefore, there exists \(w^\varepsilon \in C^{2+\alpha ,1+\frac{\alpha }{2}}\big (\overline{Q_T}\big )\) such that, for any region \(Q=(a,b)\times (0,T]\subset Q_T\), there exists a subsequence of \(w^{\varepsilon ,N}\), which we still denote by \(w^{\varepsilon ,N}\), such that \(w^{\varepsilon ,N}\rightarrow w^\varepsilon \) in \(C^{2,1}(\overline{Q})\) when \(N\rightarrow \infty \). So \(w^\varepsilon \) satisfies the initial problem

$$\begin{aligned} \begin{array}{ll} &{}w^\varepsilon _s-\frac{1}{2}\sigma ^2A^2\big (\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon }\big )w^\varepsilon _{zz} +\Big (\mu -\frac{1}{2}\sigma ^2A^2\big (\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon }\big )-\sigma ^2A\big (\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon }\big )\Big )w^\varepsilon _z\\ &{}+\Big (\mu -\sigma ^2A\big (\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon }\big )\Big )w^\varepsilon =0 \quad \hbox {in} \quad Q_T,\\ &{}w^\varepsilon (z,0)=\frac{1}{2}e^z-d. \end{array} \end{aligned}$$
(62)

The exponential growth conditions on \(w^\varepsilon \) and \(w^\varepsilon _z\) come from the estimates (55), (56) and (58).

We now prove

$$\begin{aligned} w^\varepsilon _z\ge \frac{1}{2}e^{-\kappa s}e^{z}. \end{aligned}$$
(63)

Denote

$$\begin{aligned} g^\varepsilon (z,s)=e^{-z}w^\varepsilon _z(z,s),\quad A(\cdots )=A\big (\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon }\big ). \end{aligned}$$

Letting \(N\rightarrow \infty \) in (59), we obtain

$$\begin{aligned}&{\partial }_s g^\varepsilon -\frac{\sigma ^2}{2}{\partial }_z\Big (A^2(\cdots ) g^\varepsilon _z\Big ) -\sigma ^2A^2(\cdots ) g^\varepsilon _z -\frac{\sigma ^2}{2}A^2(\cdots ) g^\varepsilon \\&-\sigma ^2A(\cdots )A'(\cdots ) \Big ({\frac{w^\varepsilon _z}{|w^\varepsilon _z|+\varepsilon } g^\varepsilon -\Big (\frac{w^{\varepsilon }}{|w^{\varepsilon }_z|+\varepsilon }\Big )\Big (\frac{w^\varepsilon _z}{|w^\varepsilon _z|+\varepsilon }\Big )\textrm{sgn}(w^\varepsilon _z)}\big ( g^\varepsilon _z+g^\varepsilon \big )\Big )\\&+\Big (\mu -\frac{1}{2}\sigma ^2A^2(\cdots )-\sigma ^2A(\cdots )\Big )\big ( g^\varepsilon _z+g^\varepsilon \big )\\&+\Big (\mu -\sigma ^2A(\cdots )\Big ) g^\varepsilon -\sigma ^2A'(\cdots ) \Big (A(\cdots )+1\Big ) g^\varepsilon \\&+\sigma ^2A'(\cdots )\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon } \Big (A(\cdots )+1\Big )\textrm{sgn}(w^\varepsilon _z)\big ( g^\varepsilon _z+g^\varepsilon \big )\\&+\sigma ^2A'(\cdots ) \Big (\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon }\Big )^2\textrm{sgn}(w^\varepsilon _z)\big ( g^\varepsilon _z+g^\varepsilon \big )-\sigma ^2A'(\cdots ) \frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon } g^\varepsilon =0. \end{aligned}$$

On the other hand, denote \(\Psi (z,s)=\frac{1}{2}e^{-\kappa s}\), we have

$$\begin{aligned}&{\partial }_s \Psi -\frac{\sigma ^2}{2}{\partial }_z\Big (A^2(\cdots )\Psi _z\Big ) -\sigma ^2A^2(\cdots )\Psi _z -\frac{\sigma ^2}{2}A^2(\cdots )\Psi \\&-\sigma ^2A(\cdots )A'(\cdots ) \Big ({\frac{w^\varepsilon _z}{|w^\varepsilon _z|+\varepsilon } \Psi -\Big (\frac{w^{\varepsilon }}{|w^{\varepsilon }_z|+\varepsilon }\Big )\Big (\frac{w^\varepsilon _z}{|w^\varepsilon _z|+\varepsilon }\Big )\textrm{sgn}(w^\varepsilon _z)}\big (\Psi _z+\Psi \big )\Big )\\&+\Big (-\frac{1}{2}\sigma ^2A^2(\cdots )-\sigma ^2A(\cdots )+\mu \Big )\big (\Psi _z+\Psi \big )\\&+\Big (\mu -\sigma ^2A(\cdots )\Big )\Psi -\sigma ^2A'(\cdots ) \Big (A(\cdots )+1\Big )\Psi \\&+\sigma ^2A'(\cdots )\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon } \Big (A(\cdots )+1\Big )\textrm{sgn}(w^\varepsilon _z)\big (\Psi _z+\Psi \big )\\&+\sigma ^2A'(\cdots ) \Big (\frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon }\Big )^2\textrm{sgn}(w^\varepsilon _z)\big (\Psi _z+\Psi \big )-\sigma ^2A'(\cdots ) \frac{w^\varepsilon }{|w^\varepsilon _z|+\varepsilon } \Psi \\&\le \frac{1}{2}e^{-\kappa s}{\Big (-\kappa +\sigma ^2 a_1(1+a_1)+\mu +\mu +\sigma ^2(a_1+1)+\sigma ^2a_1(a_1+1)+\sigma ^2a_1^2+\sigma ^2a_1\Big )}=0, \end{aligned}$$

thanks to the definition of \(\kappa \). Moreover, \(g(z,0)=\frac{1}{2}=\Psi (z,0)\). By the comparison principle, we have \(g\ge \Psi \); hence, (63) is proved.

Thanks to (58) and (63), \(w^\varepsilon _z\) has positive lower and upper bounds which are independent of \(\varepsilon \) in any bounded region, noting that the bounds of \(|{\partial }_\eta \Gamma _\varepsilon (\xi ,\eta )|\) and \(|{\partial }_\eta \Gamma _\varepsilon (\xi ,\eta )|\) are independent of \(\varepsilon \) when \(\eta \) has a positive lower bound, so the constants \(C_\varepsilon \)s in the estimates (60) and (61) are independent of \(\varepsilon \). Let \(\varepsilon \rightarrow 0\) in (62), we obtain a limit w that satisfies (17). Moreover, (18) and (19) are the direct consequences of (55), (58), (63).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, C., Shi, X. & Xu, Z.Q. Continuous-Time Markowitz’s Mean-Variance Model Under Different Borrowing and Saving Rates. J Optim Theory Appl 199, 167–208 (2023). https://doi.org/10.1007/s10957-023-02259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02259-4

Keywords

Mathematics Subject Classification

Navigation