Skip to main content
Log in

Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, \(U_{max}\), of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when traveling on a tight smaller circular arc of radius \(r <1\), where r depends on the bound, \(U_{max}\). We show in this article that if \(0<r\le \frac{1}{2}\), the shortest path between any two configurations of the rigid body on the sphere consists of a concatenation of at most three circular arcs. Specifically, if C is the smaller circular arc and G is the great circular arc, then the optimal path can only be CCCCGCCCCGGCC or G. If \(r>\frac{1}{2}\), while paths of the above type may cease to exist depending on the boundary conditions and the value of r, optimal paths may be concatenations of more than three circular arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Reference [5] considers maximum curvature to be 1, and therefore radius of small circle is \(\frac{1}{\sqrt{2}}\); reader is referred to the top of page 251, 253 of [5].

  2. There is no loss in generality in considering a point traveling with unit speed on a unit sphere; one can scale distance and time appropriately to arrive at this conclusion.

References

  1. Boissonnat, J.D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. J. Intell. Robot. Syst. 11, 5–20 (1994). https://doi.org/10.1007/BF01258291

    Article  MATH  Google Scholar 

  2. Chitour, Y., Sigalotti, M.: Dubins’ problem on surfaces I. nonnegative curvature. J. Geom. Anal. 15, 565–587 (2005). https://doi.org/10.1007/BF02922245

    Article  MathSciNet  MATH  Google Scholar 

  3. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957). https://doi.org/10.2307/2372560

    Article  MathSciNet  MATH  Google Scholar 

  4. Marchidan, A., Bakolas, E.: Numerical techniques for minimum-time routing on sphere with realistic winds. J. Guid. Control. Dyn. 39(1), 188–193 (2016). https://doi.org/10.2514/1.G001389

    Article  MATH  Google Scholar 

  5. Monroy-Pérez, F.: Non-euclidean dubins’ problem. J Dyn. Control. Syst. 4(2), 249–272 (1998). https://doi.org/10.1023/A:1022842019374

    Article  MathSciNet  MATH  Google Scholar 

  6. Sussmann, H.J.: Shortest 3-dimensional paths with a prescribed curvature bound. Proceedings of the 34th IEEE Conference on Decision and Control 4, 3306- 3312 (1995). https://doi.org/10.1109/CDC.1995.478997

  7. Taşköprü, K., Tosun, M.: Smarandache Curves on S\(^2\). Boletim da Sociedade Paranaense de Matemática 32(1), 51–59 (2014). https://doi.org/10.5269/bspm.v32i1.19242

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work has been supported in part by AFOSR Grant 21RQCOR084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayana G. Manyam.

Additional information

Communicated by Mauro Pontani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 3.2

Proof of Lemma 3.2

  1. (i)

    This can be seen from the governing equations:

    $$\begin{aligned} \frac{dX}{ds} = T(s), \quad \quad \frac{dT}{ds} = -X(s), \quad \quad \frac{dN}{ds} = 0. \end{aligned}$$

    Hence, \(N(s) = N_0\) is the normal to the plane containing the great circle, and

    $$\begin{aligned} X(s) = \begin{pmatrix} \cos (s) \\ - \sin (s) \\ 0 \end{pmatrix}, \quad \quad T(s) = \begin{pmatrix} -\sin (s) \\ - \cos (s) \\ 0 \end{pmatrix}. \end{aligned}$$
    (48)
  2. (ii)

    Define \({{{\tilde{X}}}}(s):= u(s) X(s) + N(s)\). For \(s \in [a,b)\), we note that \(\frac{d{{{\tilde{X}}}}(s)}{ds} = U \frac{dX}{ds} + \frac{dN}{ds} = 0\). Hence, \({{{\tilde{X}}}}(s)\) remains constant on [ab). Note that \(<{{{\tilde{X}}}}(s), T(s)> = 0\); define \({{{\tilde{N}}}}(s) = {{{\tilde{X}}}}(s) \times T(s) = UN(s) - X(s)\). Then:

    $$\begin{aligned} \frac{d{{{\tilde{X}}}}}{ds} = 0, \quad \quad \frac{dT(s)}{ds} = {\tilde{N}}(s), \quad \quad \frac{d{{{\tilde{N}}}}(s)}{ds} = -(1+U^2)T(s). \end{aligned}$$

    Clearly, then

    $$\begin{aligned} {{{\tilde{X}}}}(s)= & {} {{{\tilde{X}}}}(a), \end{aligned}$$
    (49)
    $$\begin{aligned} T(s)= & {} T(a) \cos (s \sqrt{1+U^2}) + {{{\tilde{N}}}}(a) \sin (s \sqrt{1+U^2}) \end{aligned}$$
    (50)
    $$\begin{aligned} {{{\tilde{N}}}}(s)= & {} \sqrt{1+U^2}[-T(a) \sin (s\sqrt{1+U^2}) + {\tilde{N}}(a) \cos (s \sqrt{1+U^2})]. \end{aligned}$$
    (51)

    Clearly, the motion is periodic and the length of the period (circumference of the smaller circle) is \(\frac{2\pi }{\sqrt{1+U^2}}\). The motion of the object corresponding to \(s \in [a,b)\) is a circular arc of radius \(r=\frac{1}{\sqrt{1+U^2}}\) and is in the plane with a normal \({{{\tilde{X}}}}(a)\).

\(\square \)

1.2 Identities Needed for Proof of Lemma 3.8

We will encounter the following quantities frequently and hence, we list them for easy reference:

$$\begin{aligned} {{\hat{\Omega }}}_L = \begin{pmatrix} 0&{}k_z&{} 0 \\ -k_z &{} 0 &{} k_x \\ 0&{} -k_x &{} 0 \end{pmatrix} =\begin{pmatrix} 0&{} -r&{} 0\\ r&{} 0&{} -\sqrt{1-r^2}\\ 0&{} \sqrt{1-r^2}&{} 0\end{pmatrix}; \end{aligned}$$
(52)
$$\begin{aligned} {{\hat{\Omega }}}_R = \begin{pmatrix} 0&{}k_z&{} 0 \\ -k_z &{} 0 &{} -k_x \\ 0&{} k_x &{} 0 \end{pmatrix} = \begin{pmatrix} 0&{} -r&{} 0\\ r&{} 0&{} \sqrt{1-r^2}\\ 0&{} -\sqrt{1-r^2}&{} 0 \end{pmatrix}. \end{aligned}$$
(53)

As we have seen before, the axial vectors of \({{\hat{\Omega }}}_L\) and \({{\hat{\Omega }}}_R\) are respectively given by:

$$\begin{aligned} \textbf{u}_L=\begin{pmatrix} \sqrt{1-r^2}\\ 0\\ r\end{pmatrix}; \quad \textbf{u}_R=\begin{pmatrix} -\sqrt{1-r^2}\\ 0\\ r\end{pmatrix}. \end{aligned}$$
(54)

Furthermore, the corresponding rotation matrices are:

$$\begin{aligned} R_L(\pi +\phi )= & {} I-{{\hat{\Omega }}}_L\sin \phi + {\hat{\Omega }}_L^2(1+\cos \phi ),\\ R_R(\pi +\phi )= & {} I- {{\hat{\Omega }}}_R\sin \phi +{\hat{\Omega }}_R^2(1+\cos \phi ). \end{aligned}$$

Let

$$\begin{aligned} e_2 = \begin{pmatrix}0\\ 1\\ 0\end{pmatrix}\quad \quad \implies e_2^T = \begin{pmatrix}0&1&0\end{pmatrix}. \end{aligned}$$
(55)

The following relationships will be useful in solving for \(a_1, a_2, a_3, b_1, b_2\) and \(b_3\):

$$\begin{aligned}{} & {} {{\hat{\Omega }}}_L\textbf{u}_R=-2r\sqrt{1-r^2}e_2, \quad \quad {{\hat{\Omega }}}_R\textbf{u}_L=2r\sqrt{1-r^2}e_2.\\{} & {} \Omega _L\textbf{u}_L=\Omega _R\textbf{u}_R= 0 \quad \implies \textbf{u}_L^T\Omega _L=\textbf{u}_R^T\Omega _R=0\\{} & {} \textbf{u}_R^TR_R(\pi +\phi )=\textbf{u}_R^T,\quad \quad \textbf{u}_L^TR_L(\pi +\phi )=\textbf{u}_L^T, \\{} & {} R_R(\pi +\phi )\textbf{u}_R=\textbf{u}_R,\quad \quad R_L(\pi +\phi )\textbf{u}_L=\textbf{u}_L. \end{aligned}$$

Claim 1:

  • If \({{\hat{\Omega }}} \in \{{{\hat{\Omega }}}_L, {{\hat{\Omega }}}_R\}\), then \(e_2^T{{\hat{\Omega }}}^2e_2 = -1\).

  • \(e_2^T{{\hat{\Omega }}}_R{{\hat{\Omega }}}_Le_2 = 1-2r^2 = e_2^T{\hat{\Omega }}_L{{\hat{\Omega }}}_Re_2\).

  • \(e_2^T{{\hat{\Omega }}}_R^2{{\hat{\Omega }}}_L e_2 = 0\).

Proof

$$\begin{aligned}&{{\hat{\Omega }}} e_2 = \begin{pmatrix} k_z \\ 0 \\ \pm k_x \end{pmatrix} \implies e_2^T {{\hat{\Omega }}}^T{{\hat{\Omega }}}e_2 = 1 \iff e_2^T{{\hat{\Omega }}}^2 e_2 = -1. \\&{{\hat{\Omega }}}_L e_2 = \begin{pmatrix} k_z \\ 0 \\ k_x \end{pmatrix}, \quad {{\hat{\Omega }}}_L e_2 = \begin{pmatrix} k_z \\ 0 \\ -k_x \end{pmatrix} \\&\implies e_2^T{{\hat{\Omega }}}_R^T{{\hat{\Omega }}}_:e_2 = k_z^2-k_x^2 = 2r^2-1 \iff e_2^T{{\hat{\Omega }}}_R{{\hat{\Omega }}}_Le_2 = 1-2r^2.\\&{{\hat{\Omega }}}_R{{\hat{\Omega }}}_L e_2 = \begin{pmatrix} 0&{}k_z&{} 0 \\ -k_z&{} 0 &{}k_x \\ 0&{}-k_x&{}0 \end{pmatrix}\begin{pmatrix} k_z \\ 0 \\ -k_x \end{pmatrix} = -e_2 \\&\iff e_2{{\hat{\Omega }}}_R^2{{\hat{\Omega }}}_Le_2 = -e_2^T{\Omega }_Re_2 = 0. \end{aligned}$$

It is easy to see that \(e_2^T{{\hat{\Omega }}}_L{{\hat{\Omega }}}_R e_2 = 1-2r^2\) and \(e_2^T{{\hat{\Omega }}}_L^2{{\hat{\Omega }}}_Re_2 = 0\). \(\square \)

Claim 2:

  1. 1.

    \(A_{100LR} = {{\textbf{u}}}_L^T{{\hat{\Omega }}}_R R_R(\pi + \phi ) R_L(\pi + \phi ) {{\textbf{u}}}_R =4r^2(1-r^2)a_1\sin \phi \).

  2. 2.

    \( A_{010LR} = {{\textbf{u}}}_L^T R_R(\pi + \phi ) R_L(\pi + \phi ){{\hat{\Omega }}}_L {{\textbf{u}}}_R=4r^2(1-r^2)a_1\sin \phi .\)

Proof

Recognizing that

$$\begin{aligned} {{\hat{\Omega }}}_R R_R(\pi + \phi ) = \frac{dR_R(\pi + \phi )}{d \phi }, \end{aligned}$$

we obtain using Euler–Rodrigues formula that

$$\begin{aligned}&A_{100LR}= {{\textbf{u}}}_L^T[-{{\hat{\Omega }}}_R^T \cos \phi - {\hat{\Omega }}_R^2 \sin \phi ][I-{{\hat{\Omega }}}_L \sin \phi + {\hat{\Omega }}_L^2 (1+\cos \phi )] {{\textbf{u}}}_R, \\&= 2k_xk_z [e_2^T\cos \phi + e_2^T {{\hat{\Omega }}}_R\sin \phi ][{{\textbf{u}}}_R +2k_xk_z (e_2 \sin \phi - {{\hat{\Omega }}}_Le_2 (1+ \cos \phi ) ]. \end{aligned}$$

Since \(e_2\) is perpendicular to both \({{\textbf{u}}}_R\) and \({\textbf{u}}_L\), and \({{\hat{\Omega }}}_R{{\textbf{u}}}_R = 0\), we get

$$\begin{aligned} A_{100LR}&= 4k_x^2k_z^2(\cos \phi \sin \phi - e_2^T{{\hat{\Omega }}}_R {{\hat{\Omega }}}_Le_2 \sin \phi (1+ \cos \phi ) \\&= 4r^2(1-r^2)\sin \phi [ \cos \phi + (2r^2-1) (1+ \cos \phi )]. \end{aligned}$$

Using a similar approach:

$$\begin{aligned} A_{010LR}= & {} {{\textbf{u}}}_L^T R_R(\pi + \phi ) R_L(\pi + \phi ){\hat{\Omega }}_L {{\textbf{u}}}_R \\= & {} {{\textbf{u}}}_L^T [I- {{\hat{\Omega }}}_R \sin \phi + {\hat{\Omega }}_R^2 (1+ \cos \phi )] [-{{\hat{\Omega }}}_L \cos \phi - {\hat{\Omega }}_L^2 \sin \phi ] {{\textbf{u}}}_R\\= & {} [{{\textbf{u}}}_L^T - {{\textbf{u}}}_L^T {{\hat{\Omega }}}_L \sin \phi + {{\textbf{u}}}_L^T {{\hat{\Omega }}}_L^2 (1+ \cos \phi )][-{{\hat{\Omega }}}_R {{\textbf{u}}}_L \cos \phi -{{\hat{\Omega }}}_R^2 {{\textbf{u}}}_L \sin \phi ]\\= & {} [ - {{\textbf{u}}}_L^T {{\hat{\Omega }}}_R \sin \phi + {{\textbf{u}}}_L^T {{\hat{\Omega }}}_R^2 (1+ \cos \phi )][-{{\hat{\Omega }}}_L {{\textbf{u}}}_R \cos \phi -{{\hat{\Omega }}}_L^2 {{\textbf{u}}}_R \sin \phi ] \\= & {} (2k_xk_z)[e_2^T \sin \phi -e_2^T {{\hat{\Omega }}}_R(1+\cos \phi )] (2k_xk_z) [e_2 \cos \phi + {{\hat{\Omega }}}_L e_2] \\= & {} 4k_x^2k_z^2[\cos \phi \sin \phi +(2r^2-1) \sin \phi (1+ \cos \phi )], \\= & {} 4r^2(1-r^2)\sin \phi [ \cos \phi + (2r^2-1) (1+ \cos \phi )]. \end{aligned}$$

\(\square \)

Claim 3:

  1. 1.

    \(A_{000RL}:= {{\textbf{u}}}_R^T{{\hat{\Omega }}}_L R_R(\pi + \phi ) {{\textbf{u}}}_L = -4r^2(1-r^2) \sin \phi .\)

  2. 2.

    \(A_{001RL}:= {{\textbf{u}}}_R^TR_L(\pi + \phi ) {\hat{\Omega }}_R{{\textbf{u}}}_L = -4r^2(1-r^2) \sin \phi .\)

Proof

$$\begin{aligned} A_{000RL}&=[{{\textbf{u}}}_R^T{{\hat{\Omega }}}_L][R_R(\pi + \phi ) {\textbf{u}}_L] \\&=2k_xk_z e_2^T[{{\textbf{u}}}_L - {{\hat{\Omega }}}_R{{\textbf{u}}}_L\sin \phi + {{\hat{\Omega }}}_R^2{{\textbf{u}}}_L (1+ \cos \phi )]\\&= 2k_xk_ze_2^T[-2k_xk_z (e_2 \sin \phi - {{\hat{\Omega }}}_R e_2 (1+ \cos \phi )] \\&= -4k_x^2k_z^2 \sin \phi = -4r^2(1-r^2) \sin \phi . \end{aligned}$$

Similarly,

$$\begin{aligned} A_{001RL}&= [{{\textbf{u}}}_R^TR_L(\pi + \phi )][{\hat{\Omega }}_R{{\textbf{u}}}_L] \\&= 2k_xk_z[{{\textbf{u}}}_R^T - {{\textbf{u}}}_R^T{{\hat{\Omega }}}_L \sin \phi + {{\textbf{u}}}_R^T{{\hat{\Omega }}}_L^2(1+\cos \phi )]e_2\\&= 2k_xk_z[- {{\textbf{u}}}_R^T{{\hat{\Omega }}}_L \sin \phi + {\textbf{u}}_R^T{{\hat{\Omega }}}_L^2(1+\cos \phi )]e_2\\&= -4k_x^2k_z^2[e_2^T\sin \phi -e_2^T {{\hat{\Omega }}}_L(1+ \cos \phi )]e_2\\&= -4k_x^2k_z^2 \sin \phi = -4r^2(1-r^2) \sin \phi . \end{aligned}$$

\(\square \)

Claim 4:

  1. 1.

    \(A_{000RR}:= {{\textbf{u}}}_R^T{\hat{\Omega }}_LR_R(\pi +\phi )R_L(\pi +\phi ){{\textbf{u}}}_R = 4r^2(1-r^2)\sin \phi [1-2r^2(1+\cos \phi )].\)

  2. 2.

    \(A_{010RR}:= {{\textbf{u}}}_R^TR_L(\pi + \phi ) {\hat{\Omega }}_L(\pi + \phi ){{\textbf{u}}}_R = 4r^2(1-r^2) \sin \phi .\)

Proof

$$\begin{aligned} A_{000RR}&= [{{\textbf{u}}}_R^T{{\hat{\Omega }}}_L]R_R(\pi +\phi )][]R_L(\pi +\phi ){{\textbf{u}}}_R]\\&= 2k_xk_z e_2^T[I-{{\hat{\Omega }}}_R \sin \phi + {{\hat{\Omega }}}_R^2 (1+\cos \phi )]\\&\qquad [{{\textbf{u}}}_R -{{\hat{\Omega }}}_L {{\textbf{u}}}_R\sin \phi + {{\hat{\Omega }}}_L^2{{\textbf{u}}}_R (1+\cos \phi )] \\&= 2k_xk_z[e_2^T - e_2^T{{\hat{\Omega }}}_R\sin \phi + e_2^T{\hat{\Omega }}_R^2 (1+\cos \phi )]\\&\qquad [-{{\hat{\Omega }}}_L {{\textbf{u}}}_R\sin \phi + {{\hat{\Omega }}}_L^2{{\textbf{u}}}_R (1+\cos \phi )]\\&= 2k_xk_z[e_2^T - e_2^T{{\hat{\Omega }}}_R\sin \phi + e_2^T{\hat{\Omega }}_R^2 (1+\cos \phi )] \\&\qquad (2k_xk_z)[e_2\sin \phi - {\hat{\Omega }}_Le_2 (1+\cos \phi )]\\&= 4k_x^2k_z^2[ \sin \phi + \underbrace{e_2^T{{\hat{\Omega }}}_R{\hat{\Omega }}_Le_2}_{1-2r^2} \sin \phi (1+\cos \phi )+ \underbrace{e_2^T{{\hat{\Omega }}}_R^2e_2}_{-1} \sin \phi (1+ \cos \phi )\\&\quad - \underbrace{e_2^T{{\hat{\Omega }}}_R^2{{\hat{\Omega }}}_Le_2}_{0}(1+\cos \phi )^2]\\&= 4k_x^2k_z^2 \sin \phi [ 1+ (1-2r^2) (1+ \cos \phi )-(1+ \cos \phi )]\\&= 4r^2(1-r^2)\sin \phi [1-2r^2(1+\cos \phi )]. \end{aligned}$$

Similarly,

$$\begin{aligned} A_{010RR}&= {{\textbf{u}}}_R^T[[R_L(\pi + \phi ) {{\hat{\Omega }}}_L(\pi + \phi )] {{\textbf{u}}}_R] = {{\textbf{u}}}_R^T[-{{\hat{\Omega }}}_L {\textbf{u}}_R \cos \phi - {\hat{\Omega }}_L^2 {{\textbf{u}}}_R\sin \phi ] \\&= -{{\textbf{u}}}_R^T {{\hat{\Omega }}}_L^2 {{\textbf{u}}}_R \sin \phi = 4r^2(1-r^2) \sin \phi \end{aligned}$$

\(\square \)

Claim 5:

  1. 1.

    \(A_{200LR}:= {{\textbf{u}}}_L^T{{\hat{\Omega }}}_R^2 R_R(\pi + \phi ) R_L(\pi +\phi ){{\textbf{u}}}_R = -4r^2(1-r^2)[1-\cos ^2 \phi + (1-2r^2) \cos \phi (1+ \cos \phi )].\)

  2. 2.

    \(A_{110LR}:= {{\textbf{u}}}_L^T{{\hat{\Omega }}}_R R_R(\pi + \phi ) R_L(\pi +\phi ){{\hat{\Omega }}}_L {{\textbf{u}}}_R = 4r^2(1-r^2)[\cos ^2 \phi + (1-2r^2) (1- \cos ^2 \phi )].\)

  3. 3.

    \(A_{020LR}:= {{\textbf{u}}}_L^T R_R(\pi + \phi ) R_L(\pi +\phi ){{\hat{\Omega }}}_L^2 {{\textbf{u}}}_R = -4r^2(1-r^2)[1-\cos ^2 \phi + (1-2r^2) \cos \phi (1+ \cos \phi )].\)

Proof

$$\begin{aligned} A_{200LR}:= & {} [{{\textbf{u}}}_L^T[{{\hat{\Omega }}}_R^2 R_R(\pi + \phi )]][ R_L(\pi +\phi ){{\textbf{u}}}_R ] \\= & {} [{{\textbf{u}}}_L^T {{\hat{\Omega }}}_R \sin \phi - {{\textbf{u}}}_L^T {{\hat{\Omega }}}_R^2 \cos \phi ][{{\textbf{u}}}_R - {{\hat{\Omega }}}_L {{\textbf{u}}}_R \sin \phi + {{\hat{\Omega }}}_L^2 {{\textbf{u}}}_R (1+\cos \phi )]\\= & {} 2k_xk_z[-e_2^T \sin \phi +e_2^T{{\hat{\Omega }}}_R \cos \phi ][{{\textbf{u}}}_R +2k_xk_z[e_2 \sin \phi - {{\hat{\Omega }}}_Le_2(1+ \cos \phi )]]\\= & {} (2k_xk_z)^2[-e_2^T \sin \phi +e_2^T{{\hat{\Omega }}}_R \cos \phi ][e_2 \sin \phi - {{\hat{\Omega }}}_Le_2(1+ \cos \phi )]\\= & {} -4k_x^2k_z^2[\sin ^2 \phi + e_2^T{{\hat{\Omega }}}_R{{\hat{\Omega }}}_L e_2\cos \phi (1+ \cos \phi )] \\= & {} -4r^2(1-r^2)[1-\cos ^2 \phi + (1-2r^2) \cos \phi (1+ \cos \phi )]. \end{aligned}$$

Similarly,

$$\begin{aligned} A_{110LR}:= & {} [{{\textbf{u}}}_L^T[{{\hat{\Omega }}}_R R_R(\pi + \phi )]] [[R_L(\pi +\phi ){{\hat{\Omega }}}_L] {{\textbf{u}}}_R] \\= & {} [-{{\textbf{u}}}_L^T {{\hat{\Omega }}}_R \cos \phi -{{\textbf{u}}}_L^T {{\hat{\Omega }}}_R^2 \sin \phi ][- {{\hat{\Omega }}}_L{{\textbf{u}}}_R \cos \phi - {{\hat{\Omega }}}_L^2{{\textbf{u}}}_R \sin \phi ]\\= & {} (2k_xk_z)^2[e_2^T \cos \phi + e_2^T {{\hat{\Omega }}}_R \sin \phi ][e_2 \cos \phi + {{\hat{\Omega }}}_Le_2 \sin \phi ] \\= & {} 4k_x^2k_z^2[ \cos ^2 \phi + e_2^T{{\hat{\Omega }}}_R{{\hat{\Omega }}}_L e_2 \sin ^2 \phi ] \\= & {} 4r^2(1-r^2)[\cos ^2 \phi + (1-2r^2) (1- \cos ^2 \phi )].\\ A_{020LR}:= & {} [{{\textbf{u}}}_L^T R_R(\pi + \phi )] [[R_L(\pi +\phi ){\hat{\Omega }}_L^2] {{\textbf{u}}}_R] \\= & {} [{{\textbf{u}}}_L^T - {{\textbf{u}}}_L^T {{\hat{\Omega }}}_R \sin \phi + {{\textbf{u}}}_L^T {{\hat{\Omega }}}_R^2 (1+ \cos \phi )] [{{\hat{\Omega }}}_L {{\textbf{u}}}_R\sin \phi - {{\hat{\Omega }}}_L^2 {{\textbf{u}}}_R\cos \phi ]\\= & {} (2k_xk_z)^2[e_2^T \sin \phi -e_2^T{{\hat{\Omega }}}_R (1+ \cos \phi )] [-e_2\sin \phi + {{\hat{\Omega }}}_Le_2 \cos \phi ]\\= & {} 4k_x^2k_z^2[ - \sin ^2 \phi -e_2^T{{\hat{\Omega }}}_R{{\hat{\Omega }}}_L e_2 \cos \phi (1+ \cos \phi )] \\= & {} -4r^2(1-r^2)[1-\cos ^2 \phi + (1-2r^2) \cos \phi (1+ \cos \phi )] \end{aligned}$$

\(\square \)

Claim 6:

  1. 1.

    \(B_{000RL}:= {{\textbf{u}}}_R^T{{\hat{\Omega }}}_L^2R_R(\pi + \phi )R_L(\pi + \phi ){{\textbf{u}}}_L = 4r^2(1-r^2)(1-2r^2)(1+\cos \phi )\).

  2. 2.

    \(A_{011RL}:= {{\textbf{u}}}_R^TR_R(\pi + \phi )R_L(\pi +\phi ){{\hat{\Omega }}}_L{{\hat{\Omega }}}_R{{\textbf{u}}}_L = -4r^2(1-r^2) \cos \phi \).

  3. 3.

    \(A_{002RL}:= {{\textbf{u}}}_R^T R_L(\pi + \phi ){\hat{\Omega }}_R^2{{\textbf{u}}}_L = 4r^2(1-r^2)(1-2r^2)(1+ \cos \phi ).\)

Proof

$$\begin{aligned} B_{000RL}:= & {} [{{\textbf{u}}}_R^T{{\hat{\Omega }}}_L^2]R_R(\pi + \phi )[R_L(\pi + \phi ){{\textbf{u}}}_L] \\= & {} [{{\textbf{u}}}_R^T{{\hat{\Omega }}}_L^2][R_R(\pi + \phi ){{\textbf{u}}}_L]\\= & {} 2k_xk_z [e_2^T{{\hat{\Omega }}}_L][{{\textbf{u}}}_L - {{\hat{\Omega }}}_R {{\textbf{u}}}_L \sin \phi + {{\hat{\Omega }}}_R^2 {{\textbf{u}}}_L (1+\cos \phi )]\\= & {} 2k_xk_z e_2^T{{\hat{\Omega }}}_L {{\hat{\Omega }}}_R^2 {{\textbf{u}}}_L (1+ \cos \phi ) \\= & {} 2k_xk_z e_2^T{{\hat{\Omega }}}_L (2k_x k_z {{\hat{\Omega }}}_Re_2 (1+ \cos \phi )) \\= & {} 4k_x^2k_z^2 e_2^T{{\hat{\Omega }}}_L{{\hat{\Omega }}}_Re_2 (1+\cos \phi )\\= & {} 4r^2(1-r^2)(1-2r^2)(1+\cos \phi ).\\ A_{011RL}:= & {} [{{\textbf{u}}}_R^TR_R(\pi + \phi )][R_L(\pi +\phi ){\hat{\Omega }}_L][{{\hat{\Omega }}}_R{{\textbf{u}}}_L] \\= & {} [{{\textbf{u}}}_R^T[R_L(\pi +\phi ){{\hat{\Omega }}}_L]][{{\hat{\Omega }}}_R{{\textbf{u}}}_L] \\= & {} [ -{{\textbf{u}}}_R^T {{\hat{\Omega }}}_L \cos \phi -{{\textbf{u}}}_R^T {{\hat{\Omega }}}_L^2 \sin \phi ] (2k_xk_z e_2)\\= & {} 2k_xk_z[-2k_xk_z e_2^T \cos \phi -2k_xk_ze_2^T {{\hat{\Omega }}}_L] e_2\\= & {} -4k_x^2k_z^2 \cos \phi = -4r^2(1-r^2) \cos \phi \end{aligned}$$

Finally,

$$\begin{aligned} A_{002RL}:= & {} [{{\textbf{u}}}_R^T R_L(\pi + \phi )][{\hat{\Omega }}_R^2{{\textbf{u}}}_L] \\= & {} [{{\textbf{u}}}_R^T - {{\textbf{u}}}_R^T {{\hat{\Omega }}}_L \sin \phi + {{\textbf{u}}}_R^T {{\hat{\Omega }}}_L^2 (1+\cos \phi )]{{\hat{\Omega }}}_R [2k_xk_z e_2]\\= & {} 2k_xk_z [-2k_xk_z e_2^T \sin \phi +2k_xk_z e_2^T {{\hat{\Omega }}}_L (1+ \cos \phi )]{{\hat{\Omega }}}_Re_2 \\= & {} 4k_x^2k_z^2(1-2r^2) \sin \phi (1+ \cos \phi ) \\= & {} 4r^2(1-r^2)(1-2r^2)(1+ \cos \phi ). \square \end{aligned}$$

Claim 7: Consider two configurations where the initial and final positions are same, and the initial and final headings are opposite to each other; the paths of type CCC are possible only for \(r\in \Big (0,\frac{\sqrt{3}}{2}\Big ]\).

Proof

It could be shown that the initial and final arc angles are equal, but, we do not present here for brevity. Let \(\alpha \) be the initial and final arc angle, and \(\beta \) be the second arc angle. Without loss of generality, we can assume that the initial and final configurations are I and \(diagonal([1, -1, -1])\), respectively. Therefore, we have the following:

$$\begin{aligned} R_R(\beta )= & {} R_L(-\alpha )\begin{pmatrix} 1&{}0&{} 0 \\ 0&{}-1&{}0 \\ 0&{}0&{}-1\end{pmatrix}R_L(-\alpha ),\\ \textbf{u}^T_L R_R(\beta ) \textbf{u}_L= & {} \textbf{u}^T_L R_L(-\alpha )\begin{pmatrix} 1&{}0&{} 0 \\ 0&{}-1&{}0 \\ 0&{}0&{}-1\end{pmatrix}R_L(-\alpha ) \textbf{u}_L \end{aligned}$$

Evaluating the above gives \(\cos {\beta }=\frac{1-2r^2}{2(1-r^2)}\). Considering the fact that the range of the cosine function is \([-1,1]\) gives \(r\le \frac{\sqrt{3}}{2}\). By definition, \(r>0\) since r is the radius of the tightest turn. \(\square \)

Claim 8: For the initial and final configurations as above, the paths of type CGC are possible only for \(r\in \Big (0,\frac{1}{\sqrt{2}}\Big ]\).

Proof

Let \(\alpha \) be the initial and final arc angle, and \(\beta \) be the second arc angle. Without loss of generality, we can assume that the initial and final configurations are I and \(diagonal([1, -1, -1])\), respectively. Therefore, we have the following:

$$\begin{aligned} R_G(\beta )= & {} R_L(-\alpha )\begin{pmatrix} 1&{}0&{} 0 \\ 0&{}-1&{}0 \\ 0&{}0&{}-1\end{pmatrix}R_L(-\alpha ),\\ \textbf{u}^T_L R_G(\beta ) \textbf{u}_L= & {} \textbf{u}^T_L R_L(-\alpha )\begin{pmatrix} 1&{}0&{} 0 \\ 0&{}-1&{}0 \\ 0&{}0&{}-1\end{pmatrix}R_L(-\alpha ) \textbf{u}_L \end{aligned}$$

Here \(R_G(\beta ) = I + \Omega _{G} \sin \beta + \Omega _G^2(1-\cos \beta )\), where \(\Omega _{G} = [0 ~-1 ~0; 1 ~0 ~0; 0 ~0 ~0]\). Evaluating the above gives \(\cos {\beta }=\frac{1-3r^2}{1-r^2}\), which implies that \(r\le \frac{1}{\sqrt{2}}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darbha, S., Pavan, A., Kumbakonam, R. et al. Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere. J Optim Theory Appl 197, 966–992 (2023). https://doi.org/10.1007/s10957-023-02206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02206-3

Keywords

Navigation