Skip to main content
Log in

Robust Chance-Constrained Geometric Programming with Application to Demand Risk Mitigation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We determine bounds on the optimal value for a chance-constrained program aiming to minimize the worst-case probability that a certain nonlinear function with random exponents will fail to exceed unity. Our approach is to design a chance-constrained inner approximation problem based on the Poisson probability measure. We then harness a property of that approximation so as to construct and solve a certain surrogate minimization problem based on a decomposable signomial (and therefore, nonconvex) program. Out of the minimization problem emerges a feasible solution and an upper bound for the original problem. Finally, we design and show how to solve a maximization problem whose optimal solution fixes a lower bound for the original problem. Motivating our study is a budget-constrained, risk-averse consumer goods firm experiencing product portfolio demand arrivals at an expected rate that jointly depends on uncertain demand responsivity parameters and the firm’s marketing effort allocation across diverse promotion channels. Numerical experiments on real and on synthetic data assess the bounds under a variety of promotion budgets, parameter uncertainty regimes and product purchase probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Avriel, M., Wilde, D.J.: Stochastic geometric programming. In: Kuhn, H.W. (ed) Proceedings of the Princeton Symposium of Mathematical Programming. Princeton University Press (1970)

  2. Boyd, S.P., Kim, S.J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, Y.O., Karlof, J.K.: Large scale geometric programming: an application in coding theory. Comput. Oper. Res. 21(7), 747–755 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chassein, A., Goerigk, M.: On the complexity of robust geometric programming with polyhedral uncertainty. Oper. Res. Lett. 47(1), 21–24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chiang, M.: Geometric programming for communication systems. Found. Trends Commun. Inf. Theory 2(1/2), 1–154 (2005)

    Article  MATH  Google Scholar 

  7. Corstjens, M., Doyle, P.: The application of geometric programming to marketing problems. J. Mark. 49(1), 137–144 (1985)

    Article  Google Scholar 

  8. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duffin, R., Peterson, E.L., Zener, C.: Geometric programming-theory and application. SIAM Rev. 10(2), 235–236 (1968)

    Article  Google Scholar 

  10. Dupacova, J.: Stochastic geometric programming with an application. Kybernetika 46(3), 374–386 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Ecker, J.G.: Geometric programming: methods, computations and applications. SIAM Rev. 22(3), 338–362 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fontem, B., Keskin, B., Melouk, S., Vaughn, C.: An exact decomposition algorithm for a chance-constrained new product risk model. Oper. Res. Lett. 47(4), 250–256 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, R., Kleywegt, A.: Distributionally robust stochastic optimization with Wasserstein distance. arXiv:1604.02199 (2016)

  14. Hosseini-Nodeh, Z., Khanjani-Shiraz, R., Pardalos, P.M.: Distributionally robust portfolio optimization with second order stochastic dominance based on Wasserstein metric. Inf. Sci. 613, 828–852 (2022)

    Article  Google Scholar 

  15. Hsiung, Kan-Lin., Kim, Seung-Jean., Boyd, Stephen: Tractable approximate robust geometric programming. Optim. Eng. 9(2), 95–118 (2008). https://doi.org/10.1007/s11081-007-9025-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsiung, K., Chen, H.: Deterministic approximations for a class of chance-constrained geometric programs. Int. J. Comput. Optim. 7(1), 13–21 (2020)

    Google Scholar 

  17. Iwata, K., Murotsu, Y., Iwatsubo, T., Fujii, S.: A probabilistic approach to the determination of the optimum cutting conditions. J. Eng. Ind. 94(4), 1099–1107 (1972)

    Article  Google Scholar 

  18. Khanjani-Shiraz, R., Babapour-Azar, A., Hosseini-Nodeh, Z., Pardalos, P.M.: Distributionally robust maximum probability shortest path problem. J. Comb. Optim. 43, 140–167 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khanjani-Shiraz, R., Babapour-Azar, A., Hosseini-Nodeh, Z., Pardalos, P.M.: Distributionally robust joint chance-constrained support vector machines. Optim. Lett. 1–34 (2022b)

  20. Khanjani, S.R., Fukuyama, H.: Integrating geometric programming with rough set theory. Oper. Res. Int. J. 18, 1–32 (2018)

    Article  Google Scholar 

  21. Khanjani-Shiraz, R., Khodayifar, S., Pardalos, P.M.: Copula theory approach to stochastic geometric programming. J. Global Optim. 81, 435–468 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khanjani, S.R., Tavana, M., Fukuyama, H., Di Caprio, D.: Fuzzy chance-constrained geometric programming: The possibility, necessity and credibility approaches. Oper. Res. Int. J. 17, 67–97 (2017)

    Article  Google Scholar 

  23. Li, Y., Chen, Y.C.: Geometric programming approach to doping profile design optimization of metal-oxide-semiconductor devices. Math. Comput. Model. 58(1–2), 344–354 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, S.T.: Posynomial geometric programming with interval exponents and coefficients. Eur. J. Oper. Res. 186(1), 17–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J., Lisser, A., Chen, Z.: Stochastic geometric optimization with joint probabilistic constraints. Oper. Res. Lett. 44(5), 687–691 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, J., Lisser, A., Chen, Z.: Distributionally robust chance constrained geometric optimization. Math. Oper. Res. 47(4), 2547–3399 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Namkoong, H., Duchi, J.C.: Stochastic gradient methods for distributionally robust optimization with \(f\)-divergences. Adv. Neural Inf. Process. Syst. 29, 2016 (2016)

    Google Scholar 

  28. Peterson, E.L.: Geometric programming. SIAM Rev. 18(1), 1–51 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Popescu, I.: Robust mean-covariance solutions for stochastic optimization. Oper. Res. 55(1), 98–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rahimian, H., Mehrotra, S.: Frameworks and results in distributionally robust optimization. Open J. Math. Optim. 3 (2022)

  31. Rao, S.S.: Engineering Optimization: Theory and Practice, 3rd edn. Wiley, New York (1996)

    Google Scholar 

  32. Saab, A., Burnell, E., Hoburg, W.W.: Robust designs via geometric programming (2018). arXiv:1808.07192v1

  33. Sadjadi, S.J., Yazdian, S.A., Shahanaghi, K.: Optimal pricing, lot-sizing and marketing planning in a capacitated and imperfect production system. Comput. Ind. Eng. 62(1), 349–358 (2012)

    Article  Google Scholar 

  34. Sadjadi, S.J., Hesarsorkh, H.A., Mohammadi, M., Naeini, A.B.: Joint pricing and production management: a geometric programming approach with consideration of cubic production cost function. J. Ind. Eng. Int. 11, 209–223 (2015)

    Article  Google Scholar 

  35. Samadi, F., Mirzazadeh, A., Pedram, M.M.: Fuzzy pricing, marketing and service planning in a fuzzy inventory model: a geometric programming approach. Appl. Math. Model. 37(10/11), 6683–6694 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shiraz, R.K., Tavana, M., Di Caprio, D., Fukuyama, H.: Solving geometric programming problems with normal, linear and zigzag uncertainty distributions. J. Optim. Theory Appl. 170, 1075–1078 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Singh, J., Luo, Z., Sapatnekar, S.S.: A geometric programming-based worst case gate sizing method incorporating spatial correlation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(2), 295–308 (2008)

    Article  Google Scholar 

  38. Vanhonacker, W.R.: Estimation and testing of a dynamic sales response model with data aggregated over time: some results for the autoregressive current effects model. J. Mark. Res. 21(4), 445–455 (1984)

    Article  Google Scholar 

  39. Vulcano, G., van Ryzin, G., Ratliff, R.: Estimating primary demand for substitutable products from sales transaction data. Oper. Res. 60(2), 313–334 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wiebking, R.D.: Optimal engineering design under uncertainty by geometric programming. Manag. Sci. 23(6), 644–651 (1977)

    Article  MATH  Google Scholar 

  41. Zhang, Q., Kortanek, K.O.: On a compound duality classification for geometric programming. J. Optim. Theory Appl. 180, 711–728 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao, C., Guan, Y.: Data-driven risk-averse stochastic optimization with Wasserstein metric. Oper. Res. Lett. 46(2), 262–267 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to both anonymous reviewers for insightful comments and suggestions that led to a substantial improvement of the paper’s content and exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belleh Fontem.

Additional information

Communicated by René Henrion.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontem, B. Robust Chance-Constrained Geometric Programming with Application to Demand Risk Mitigation. J Optim Theory Appl 197, 765–797 (2023). https://doi.org/10.1007/s10957-023-02201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02201-8

Keywords

Navigation