Skip to main content
Log in

Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the present paper, we are concerned with the study of a variable exponent double-phase obstacle problem which involves a nonlinear and nonhomogeneous partial differential operator, a multivalued convection term, a general multivalued boundary condition and an obstacle constraint. Under the framework of anisotropic Musielak–Orlicz Sobolev spaces, we establish the nonemptiness, boundedness and closedness of the solution set of such problems by applying a surjectivity theorem for multivalued pseudomonotone operators and the variational characterization of the first eigenvalue of the Steklov eigenvalue problem for the p-Laplacian. In the second part, we consider a nonlinear inverse problem which is formulated by a regularized optimal control problem to identify the discontinuous parameters for the variable exponent double-phase obstacle problem. We then introduce the parameter-to-solution map, study a continuous result of Kuratowski type and prove the solvability of the inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Bahrouni, A., Rădulescu, V.D., Winkert, P.: Double phase problems with variable growth and convection for the Baouendi–Grushin operator. Z. Angew. Math. Phys. 71(6), Paper No. 183 (2020)

  2. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57(2), Art. 62 (2018)

  4. Biagi, S., Esposito, F., Vecchi, E.: Symmetry and monotonicity of singular solutions of double phase problems. J. Differ. Equ. 280, 435–463 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byun, S.-S., Oh, J.: Regularity results for generalized double phase functionals. Anal. PDE 13(5), 1269–1300 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carl, S., Le, V.K.: Multi-valued Variational Inequalities and Inclusions. Springer, Cham (2021)

    Book  MATH  Google Scholar 

  7. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Springer, New York (2007)

    Book  MATH  Google Scholar 

  8. Clason, C., Khan, A.A., Sama, M., Tammer, C.: Contingent derivatives and regularization for noncoercive inverse problems. Optimization 68(7), 1337–1364 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. (4) 195(6), 1917–1959 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218(1), 219–273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crespo-Blanco, Á., Gasiński, L., Harjulehto, P., Winkert, P.: A new class of double phase variable exponent problems: existence and uniqueness (preprint). arXiv: 2103.08928 (2021)

  13. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic Publishers, Boston, MA (2003)

    Book  MATH  Google Scholar 

  14. El Manouni, S., Marino, G., Winkert, P.: Existence results for double phase problems depending on Robin and Steklov eigenvalues for the \(p\)-Laplacian. Adv. Nonlinear Anal. 11(1), 304–320 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Faraci, F., Motreanu, D., Puglisi, D.: Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calc. Var. Partial Differ. Equ. 54(1), 525–538 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Faraci, F., Puglisi, D.: A singular semilinear problem with dependence on the gradient. J. Differ. Equ. 260(4), 3327–3349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Farkas, C., Winkert, P.: An existence result for singular Finsler double phase problems. J. Differ. Equ. 286, 455–473 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Figueiredo, G.M., Madeira, G.F.: Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient. J. Differ. Equ. 274, 857–875 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fiscella, A.: A double phase problem involving Hardy potentials. Appl. Math. Optim. (to appear)

  20. Gasiński, L., Papageorgiou, N.S.: Constant sign and nodal solutions for superlinear double phase problems. Adv. Calc. Var. 14(4), 613–626 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gasiński, L., Papageorgiou, N.S.: Positive solutions for nonlinear elliptic problems with dependence on the gradient. J. Differ. Equ. 263, 1451–1476 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gasiński, L., Winkert, P.: Constant sign solutions for double phase problems with superlinear nonlinearity. Nonlinear Anal. 195, 111739 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gasiński, L., Winkert, P.: Existence and uniqueness results for double phase problems with convection term. J. Differ. Equ. 268(8), 4183–4193 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gasiński, L., Winkert, P.: Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold. J. Differ. Equ. 274, 1037–1066 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gwinner, J.: An optimization approach to parameter identification in variational inequalities of second kind. Optim. Lett. 12(5), 1141–1154 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gwinner, J., Jadamba, B., Khan, A.A., Sama, M.: Identification in variational and quasi-variational inequalities. J. Convex Anal. 25(2), 545–569 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Le, V.K.: A range and existence theorem for pseudomonotone perturbations of maximal monotone operators. Proc. Amer. Math. Soc. 139(5), 1645–1658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lê, A.: Eigenvalue problems for the \(p\)-Laplacian. Nonlinear Anal. 64(5), 1057–1099 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, W., Dai, G.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265(9), 4311–4334 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Z., Motreanu, D., Zeng, S.: Positive solutions for nonlinear singular elliptic equations of \(p\)-Laplacian type with dependence on the gradient. Calc. Var. Partial Differ. Equ., 58(1), Paper No. 28 (2019)

  31. Liu, Z., Papageorgiou, N.S.: Positive solutions for resonant \((\rm p, q)\)-equations with convection. Adv. Nonlinear Anal. 10(1), 217–232 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, W., Winkert, P.: Combined effects of singular and superlinear nonlinearities in singular double phase problems in \({\mathbb{R} ^{N}}\). J. Math. Anal. Appl. 507(2), 125762 (2022)

    Article  MATH  Google Scholar 

  33. Marano, S.A., Winkert, P.: On a quasilinear elliptic problem with convection term and nonlinear boundary condition. Nonlinear Anal. 187, 159–169 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marcellini, P.: Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions. J. Differ. Equ. 90(1), 1–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105(3), 267–284 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Migórski, S., Khan, A.A., Zeng, S.: Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems. Inverse Probl. 36(2), 024006 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Migórski, S., Khan, A.A., Zeng, S.: Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of \(p\)-Laplacian type. Inverse Probl. 35(3), 035004 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Migórski, S., Ochal, A.: An inverse coefficient problem for a parabolic hemivariational inequality. Appl. Anal. 89(2), 243–256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Springer, New York (2013)

    Book  MATH  Google Scholar 

  40. Motreanu, D., Winkert, P.: Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence. Appl. Math. Lett. 95, 78–84 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Panagiotopoulos, P.D.: Nonconvex problems of semipermeable media and related topics. Z. Angew. Math. Mech. 65(1), 29–36 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Panagiotopoulos, P.D.: Hemivariational Inequalities. Springer-Verlag, Berlin (1993)

    Book  MATH  Google Scholar 

  43. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Positive solutions for nonlinear Neumann problems with singular terms and convection. J. Math. Pures Appl. (9) 136, 1–21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Papageorgiou, N.S., Vetro, C., Vetro, F.: Solutions for parametric double phase Robin problems. Asymptot. Anal. 121(2), 159–170 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Papageorgiou, N.S., Winkert, P.: Applied Nonlinear Functional Analysis. An Introduction. De Gruyter, Berlin (2018)

    Book  MATH  Google Scholar 

  46. Perera, K., Squassina, M.: Existence results for double-phase problems via Morse theory. Commun. Contemp. Math. 20(2), 1750023 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rǎdulescu, V.D., Repovš, D.:“Partial differential equations with variable exponents. Variational methods and qualitative analysis. Monographs and Research”, Notes in Mathematics, CRC Press, Boca Raton, FL (2015)

  48. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Simon, J., Régularité de la solution d’une équation non linéaire dans \({\mathbb{R} }^{N}\), Journées d’Analyse Non Linéaire (Proc. Conf. Besançon,: Springer. Berlin 665(1978), 205–227 (1977)

  50. Stegliński, R.: Infinitely many solutions for double phase problem with unbounded potential in\(\mathbb{R}^{N}\). Nonlinear Anal. 214, Paper No. 112580 (2022)

  51. Zeng, S., Bai, Y., Gasiński, L., Winkert, P.: Convergence analysis for double phase obstacle problems with multivalued convection term. Adv. Nonlinear Anal. 10(1), 659–672 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zeng, S., Bai, Y., Gasiński, L., Winkert, P.: Existence results for double phase implicit obstacle problems involving multivalued operators. Calc. Var. Partial Differ.Equ. 59(5), Paper No. 176 (2020)

  53. Zeng, S., Gasiński, L., Winkert, P., Bai, Y.: Existence of solutions for double phase obstacle problems with multivalued convection term. J. Math. Anal. Appl. 501(1), 123997 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zeng, S., Papageorgiou, N.S.: Positive solutions for \((p, q)\)-equations with convection and a sign-changing reaction. Adv. Nonlinear Anal. 11(1), 40–57 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675–710 (1986)

    MathSciNet  Google Scholar 

  56. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russian J. Math. Phys. 3(2), 249–269 (1995)

    MathSciNet  MATH  Google Scholar 

  57. Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. 173(5), 463–570 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Natural Science Foundation of Guangxi Grant No. 2021GXNSFFA196004, the NNSF of China Grant Nos. 12001478, the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH, National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, and the Startup Project of Doctor Scientific Research of Yulin Normal University No. G2020ZK07. It is also supported by the Ministry of Science and Higher Education of Republic of Poland under Grants Nos. 4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengda Zeng.

Ethics declarations

Conflict of interests

There is no conflict of interests.

Additional information

Communicated by Akhtar A. Khan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Papageorgiou, N.S. & Winkert, P. Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents. J Optim Theory Appl 196, 666–699 (2023). https://doi.org/10.1007/s10957-022-02155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02155-3

Keywords

Mathematics Subject Classification

Navigation