Skip to main content
Log in

Pricing and Quality Strategies in Crowdfunding with Network Externality

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

To improve the financing performance, optimization models have been developed to analyze the operation mechanism of crowdfunding. However, network externality, which has proven to exist in crowdfunding, was ignored in previous studies. In order to address this gap, we construct an optimization model incorporating network externality and investigate its impact on crowdfunding operation decisions. Our analysis reveals that network externality does not monotonously influence optimal prices, while it always improves the project quality. In addition, we prove that although network externality increases the creator’s profit, it increases the price discrimination level and may hurt consumers, thus reducing social welfare. In extensions, we investigate the effects of demand uncertainty, external financing, and word-of-mouth effect on the optimal decisions. Our work not only provides managerial implications for crowdfunding activities, but also reveals the potential negative effects of network externality for platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrawal, A., Catalini, C., Goldfarb, A.: The geography of crowdfunding. National Bureau of Economic Research NBER No. w16820, University of Toronto (2011)

  2. Ahlers, G.K.C., Cumming, D., Günther, C., Schweizer, D.: Signaling in equity crowdfunding. Entrep. Theory Pract. 39(4), 955–980 (2015)

    Article  Google Scholar 

  3. Bapna, S., Ganco, M.: Gender gaps in equity crowdfunding: evidence from a randomized field experiment. Manag. Sci. 67(5), 2679–2710 (2021)

    Article  Google Scholar 

  4. Belleflamme, P., Lambert, T., Schwienbacher, A.: Crowdfunding: tapping the right crowd. J. Bus. Venturing 29(5), 585–609 (2021)

    Article  Google Scholar 

  5. Bensaid, B., Lesne, J.P.: Dynamic monopoly pricing with network externality. Int. J. Ind. Organ. 14(6), 837–855 (1996)

    Article  Google Scholar 

  6. Bi, G.B., Geng, B.T., Liu, L.D.: On the fixed and flexible funding mechanisms in reward-based crowdfunding. Eur. J. Oper. Res. 279(1), 168–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blaseg, D., Schulze, C., Skiera, B.: Consumer protection on Kickstarter. Market. Sci. 39(1), 211–233 (2020)

    Article  Google Scholar 

  8. Cabral, L.M.B., Salant, D.J., Woroch, G.A.: Monopoly pricing with network externality. Int. J. Ind. Organ. 17(2), 199–214 (1999)

    Article  Google Scholar 

  9. Chemla, G., Tinn, K.: Learning through crowdfunding. Manag. Sci. 66(5), 1783–1801 (2020)

    Article  Google Scholar 

  10. Chen, C., Duan, Y.: Online cash-back shopping with network externalities. INFOR 59(1), 26–52 (2021)

    MathSciNet  Google Scholar 

  11. Church, J., Gandal, N.: Complementary network externalities and technological adoption. Int. J. Ind. Organ. 11(2), 239–260 (1993)

    Article  Google Scholar 

  12. Farrell, J., Saloner, G.: Installed base and compatibility: innovation, product preannouncements, and predation. Am. Econ. Rev. 940–955 (1986)

  13. Hahn, J.H.: Nonlinear pricing of telecommunications with call and network externality. Int. J. Ind. Organ. 21(7), 949–967 (2003)

    Article  Google Scholar 

  14. Halaburda, H., Jullien, B., Yehezkel, Y.: Dynamic competition with network externalities: how history matters. RAND J. Econ. 51(1), 3–31 (2020)

    Article  Google Scholar 

  15. Hu, M., Li, X., Shi, M.Z.: Product and pricing decisions in crowdfunding. Market. Sci. 34(3), 331–345 (2015)

    Article  Google Scholar 

  16. Jing, B.: Network externality and market segmentation in a monopoly. Econ. Lett. 95(1), 7–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katz, M.L., Shapiro, C.: Network externalities, competition, and compatibility. Am. Econ. Rev. 75(3), 424–440 (1985)

    Google Scholar 

  18. Kumar, P., Langberg, N., Zvilichovsky, D.: Crowdfunding, financing constraints, and real effects. Manag. Sci. 66(8), 3561–3580 (2020)

    Article  Google Scholar 

  19. Li, Z., Duan, J.A., Ransbotham, S.: Coordination and dynamic promotion strategies in crowdfunding with network externality. Prod. Oper. Manag. 29(4), 1032–1049 (2020)

    Article  Google Scholar 

  20. Li, J., Hu, F., Yan, T., Song, X.: How to charge doctors and price medicines in a two-sided online healthcare platform with network externalities? Int. J. Prod. Res. (2022). https://doi.org/10.1080/00207543.2022.2077151

    Article  Google Scholar 

  21. Mollick, E.: The dynamics of crowdfunding: an exploratory study. J. Bus. Venturing 29(1), 1–16 (2014)

    Article  Google Scholar 

  22. Rohlfs, J.: A theory of interdependent demand for a communications service. Bell J. Econ. Manag. Sci. 16–37 (1974)

  23. Tian, Y., Zhang, Y.: Pricing of crowdfunding products with strategic consumers and online reviews. Electron. Commer. Res. Appl. (2022). https://doi.org/10.1016/j.elerap.2022.101169

    Article  Google Scholar 

  24. Vismara, S.: Equity retention and social network theory in equity crowdfunding. Small Bus. Econ. 46(4), 579–590 (2016)

    Article  MathSciNet  Google Scholar 

  25. Wang, H., He, Y., Ding, Q.: The impact of network externalities and altruistic preferences on carbon emission reduction of low carbon supply chain. Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-20459-9

    Article  Google Scholar 

  26. Xu, Y., Song, W., Bi, G.B.: The roles of crowdfunding: financing, point provision and ex-post production. Int. J. Prod. Res. 59(23), 7037–7056 (2021)

    Article  Google Scholar 

  27. Xu, Y., Song, W., Bi, G.B., Zhou, Q.: Threshold effect in crowdfunding: evidence from investment-level data. Int. J. Electron. Comm. 25(4), 416–439 (2021)

    Article  Google Scholar 

  28. Younkin, P., Kuppuswamy, V.: The colorblind crowd? Founder race and performance in crowdfunding. Manag. Sci. 64(7), 3269–3287 (2018)

    Article  Google Scholar 

  29. Zhang, Z.H., Ling, L.Y., Yang, F.: Pricing strategy and campaign design in flight crowdfunding: a creative way to sell flight tickets. Nav. Res. Log. 68(6), 795–809 (2021)

    Article  MathSciNet  Google Scholar 

  30. Zhao, C., Zhang, Y., Liu, B.: Sales effort investment and the success of online product crowdfunding. IEEE Access 7, 48151–48166 (2019)

    Article  Google Scholar 

  31. Zhou, Y., Zhang, J., Zeng, Y.: Borrowing or crowdfunding: a comparison of poverty alleviation participation modes considering altruistic preferences. Int. J. Prod. Res. 59(21), 6564–6578 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by National Natural Science Foundation of China [Grant Numbers: 72201001, 72101003, 71801203].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhou.

Additional information

Communicated by Juan-Enrique Martinez Legaz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma (3.1)

  1. (1)

    When \(p_{\textrm{c}} \le \lambda q\), then \(\Pi \) increases with \(p_{\textrm{c}} \). So the optimal price is \(p_{\textrm{c}} =\lambda q\) and \(\Pi =\lambda q-I\).

  2. (2)

    When \(q\ge p_{\textrm{c}} >\lambda q\), for a given price \( p_{\textrm{c}} \), by solving FOCs, we can get \(p_{\textrm{r}} (p_{\textrm{c}} )=\frac{p_{\textrm{c}} -\lambda q}{2(1-\lambda )} \). Substituting \(p_{\textrm{r}} (p_{\textrm{c}} )=\frac{p_{c} -\lambda q}{2(1-\lambda )} \) into \(\Pi \), we have

    $$\begin{aligned} \Pi (p_{\textrm{r}} (p_{\textrm{c}} ))=\frac{-(3-4\lambda )p_{\textrm{c}}^{2} +(4-6\lambda )qp_{\textrm{c}} +\lambda ^{2} q^{2} }{{ 4(1-}\lambda { )}^{2} { q}}. \end{aligned}$$
    (A. 1)

    If \(\lambda >\frac{{ 1}}{{ 2}} \), then \(\frac{\partial \Pi (p_{\textrm{r}} (p_{\textrm{c}} ))}{\partial p_{\textrm{c}} } \le 0\), thus the creator will set \(p_{\textrm{c}} =\lambda q\), then \(\Pi =\lambda q-I\). In this case, no consumers will purchase in the crowdfunding stage. If \( \lambda \le \frac{{ 1}}{{ 2}} \), solving FOCs, we can get \(p_{\textrm{c}} =\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\), then \(p_{\textrm{r}} =\frac{1-2\lambda }{3-4\lambda } q\). Substituting \(p_{\textrm{c}} =\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\) and \(p_{\textrm{r}} =\frac{1-2\lambda }{3-4\lambda } q\) into \(\Pi \), we can get \( \Pi =\frac{1-\lambda }{3-4\lambda } q-I\).

  3. (3)

    When \(p_{\textrm{c}} >q\), solving FOCs, then we can get \(p_{\textrm{r}} =\frac{q}{2} \). Substituting \(p_{\textrm{r}} =\frac{q}{2} \) in \(\Pi \), we can get \(\Pi =\frac{q}{4} -I\). Through comparisons among the above three cases, we have Lemma (3.1). \(\square \)

Proof of Proposition (3.2)

From Lemma (3.1), we have: if \(\lambda \le \frac{{ 1}}{{ 2}} \), then \(\frac{\partial p_{\textrm{c}}^{*} }{\partial \lambda } =-\frac{q}{(3-4\lambda )^{2} }<0,{ \; }\frac{\partial p_{\textrm{r}}^{*} }{\partial \lambda } =\frac{-2q}{(3-4\lambda )^{2} } <0\), and \(\frac{\partial \Pi ^{*} }{\partial \lambda } =\frac{q}{(3-4\lambda )^{2} } >0\); if \(\lambda >\frac{{ 1}}{{ 2}} \), then \(\frac{\partial p_{\textrm{c}}^* }{\partial \lambda } =\lambda >0\) and \(\frac{\partial \Pi ^{*} }{\partial \lambda } =q>0\). \(\square \)

Proof of Proposition (3.4)

Taking the derivative of both sides of the Eq. (8) with respect to \(\lambda \), we can obtain

$$\begin{aligned} \frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } (1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )+\bar{p}_{\textrm{c}} (-\frac{1}{(1-\lambda )q} \frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } -\frac{-(1-\lambda )q^{2} +q(\bar{p}_{\textrm{c}} -\lambda q)}{(1-\lambda )^{2} q^{2} } )=0\nonumber \\ \end{aligned}$$
(A. 2)

and

$$\begin{aligned} -\frac{\partial \frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} }{\partial \lambda } \bar{p}_{\textrm{c}} +(1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } =0. \end{aligned}$$
(A. 3)

Using \(\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\ge \bar{p}_{\textrm{c}} \ge \frac{{ 1}}{{ 2}} q\), we have

$$\begin{aligned} \frac{\partial p_{\textrm{c}}^{*} }{\partial \lambda } { =}\frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } =\frac{\bar{p}_{\textrm{c}} (\bar{p}_{\textrm{c}} -q)}{(1-\lambda )^{2} q-(1-\lambda )(\bar{p}_{\textrm{c}} -\lambda q)-(1-\lambda )\bar{p}_{\textrm{c}} } \ge 0 \end{aligned}$$
(A. 4)

and

$$\begin{aligned} \frac{\partial \frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} }{\partial \lambda } { =}\frac{(1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } }{{ 2}\bar{p}_{\textrm{c}} } \ge 0. \end{aligned}$$
(A. 5)

Because inequality (A. 5) holds, we can obtain \(\Pi ^{*} =\frac{(\bar{p}_{\textrm{c}} -\lambda q)^{2} }{4q(1-\lambda )^{2} } -B\) increases with \(\lambda \).

By transforming equation (8), we have

$$\begin{aligned} (q-\bar{p}_{\textrm{c}} )\bar{p}_{\textrm{c}} =(I-B)(1-\lambda )q. \end{aligned}$$
(A. 6)

Taking the derivative of both sides of the Eq. (A. 6) with respect to q, we can obtain

$$\begin{aligned} \bar{p}_{\textrm{c}} +q\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} -2\bar{p}_{\textrm{c}} \frac{\partial \bar{p}_{\textrm{c}} }{\partial q} =(I-B)(1-\lambda )=\frac{(q-\bar{p}_{\textrm{c}} )\bar{p}_{\textrm{c}} }{q}. \end{aligned}$$
(A. 7)

Thus we have \(\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} =\frac{\bar{p}_{\textrm{c}}^{2} }{q(2\bar{p}_{\textrm{c}} -q)} >0\). By transforming equation (8), we can get \((q-\bar{p}_{\textrm{c}} )\frac{\bar{p}_{c} }{q} =(I-B)(1-\lambda )\). Because \( \frac{\partial (q-\bar{p}_{\textrm{c}} )}{\partial q} =1-\frac{\bar{p}_{\textrm{c}}^{2} }{q(2\bar{p}_{\textrm{c}} -q)} =\frac{\bar{p}_{\textrm{c}}^{2} -q^{2} }{q(2\bar{p}_{\textrm{c}} -q)} <0\), we have \(\frac{\bar{p}_{\textrm{c}} }{q} \) increases with q. Therefore, \(\Pi ^{*} =\frac{(\frac{\bar{p}_{\textrm{c}} }{q} -\lambda )^{2} q}{4(1-\lambda )^{2} } -B\) increases with q.

Taking the derivative of both sides of the Eq. (8) with respect to \(B-I\), we can get

$$\begin{aligned} \frac{\partial \bar{p}_{\textrm{c}} }{\partial B-I} (1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )+\bar{p}_{\textrm{c}} (-\frac{1}{(1-\lambda )q} \frac{\partial \bar{p}_{\textrm{c}} }{\partial B-I} )=-1. \end{aligned}$$
(A. 8)

By arranging Eq. (A. 8), we can get

$$\begin{aligned} \frac{\partial p_{\textrm{c}}^{*} }{\partial B-I} { =}\frac{\partial \bar{p}_{\textrm{c}} }{\partial B-I} =\frac{-1}{1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} -\frac{\bar{p}_{\textrm{c}} }{(1-\lambda )q} }>0,\ \frac{\partial p_{r}^{*} }{\partial B-I} =\frac{1}{2(1-\lambda )} \frac{\partial p_{r}^{*} }{\partial B-I} >0.\nonumber \\ \end{aligned}$$
(A. 9)

Because \(\Pi ^{*} \) increases with \(\bar{p}_{c} \), and \( \bar{p}_{\textrm{c}} \) decreases with I, we have \(\Pi ^{*} \) decreases with I. Furthermore,

$$\begin{aligned} \begin{array}{l}{\frac{\partial \Pi ^{*} }{\partial B} =\frac{{ 2}(\bar{p}_{\textrm{c}} -\lambda q)}{4q(1-\lambda )^{2} } \frac{\partial \bar{p}_{\textrm{c}} }{\partial B} -1=\frac{-1}{1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} -\frac{\bar{p}_{\textrm{c}} }{(1-\lambda )q} } \frac{{ 2}(\bar{p}_{\textrm{c}} -\lambda q)}{4q(1-\lambda )^{2} } -1\ge 0} \\ {\qquad \quad \Leftrightarrow \frac{\bar{p}_{\textrm{c}} -\lambda q}{{ 2}(1-\lambda ){ (2}\bar{p}_{\textrm{c}} -q{ )}} \ge { 1}\Leftrightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\ge \bar{p}_{\textrm{c}}. } \end{array}. \end{aligned}$$
(A. 10)

\(\square \)

Proof of Proposition (3.5)

When \(\lambda \ge \frac{1}{2} \), it is obvious that CS is not affected by \(\lambda \), B, and I, while increases with q; when \(\lambda <\frac{1}{2} \cup B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q\ge I\), we can easily get that CS increases with \(\lambda \) and q, while is not influenced by B and I; when \(\lambda<\frac{1}{2} \cup B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q<I\), \(CS=\frac{{ 5}\bar{p}_{\textrm{c}}^{2} -2\bar{p}_{\textrm{c}} q(4+\lambda )+(4+\lambda ^{2} )q^{2} }{8(1-\lambda )^{2} q} \). The symmetry axis of \({ 5}\bar{\textrm{p}}_{\textrm{c}}^{2} -2\bar{p}_{\textrm{c}} q(4+\lambda )+(4+\lambda ^{2} )q^{2} \) with respect to \(\bar{p}_{\textrm{c}} \) is \( \frac{4+\lambda }{5} q\) and \(\frac{4+\lambda }{5} q>\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\ge \bar{p}_{c} \ge \frac{{ 1}}{{ 2}} q\). Therefore, CS decreases with \(\bar{p}_{\textrm{c}} \). Further, because \(\bar{p}_{\textrm{c}} \) increases (decreases) with B (I), we have CS decreases (increases) with B (I). Next, we prove \(\frac{\partial CS}{\partial q} <0\) and \(\frac{\partial CS}{\partial \lambda } <0\).

$$\begin{aligned}{} & {} \begin{array}{l} {\frac{\partial CS}{\partial q} =\frac{1}{8(1-\lambda )^{2} } (\frac{10\bar{p}_{\textrm{c}} q\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} -5\bar{p}_{\textrm{c}}^{2} }{q^{2} } -2(4+\lambda )\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} +(4+\lambda ^{2} ))} \\ {\;\;\;\;\;\;\;\, =-\frac{1}{8(1-\lambda )^{2} q(2\bar{p}_{\textrm{c}} -q)} ((3+2\lambda )\bar{p}_{\textrm{c}}^{2} -2(4+\lambda ^{2} )q\bar{p}_{\textrm{c}} +(4+\lambda ^{2} )q^{2} )}. \end{array} \end{aligned}$$
(A. 11)
$$\begin{aligned}{} & {} \begin{array}{l} {\frac{\partial CS}{\partial \lambda } =\frac{(10\bar{p}_{\textrm{c}} \frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } -2(4+\lambda )q\frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } -2\bar{p}_{\textrm{c}} q+2\lambda q^{2} )8(1-\lambda )^{2} q+(5\bar{p}_{\textrm{c}}^{2} -2\bar{p}_{\textrm{c}} q(4+\lambda )+(4+\lambda ^{2} )q^{2} )16(1-\lambda )q}{{ 64}(1-\lambda )^{{ 4}} q^{2} } } \\ {\;\;\;\;\;\;\,\,=\frac{1}{8(1-\lambda )^{3} q} \frac{2(\bar{p}_{\textrm{c}}-q)^{2} (5\bar{p}_{\textrm{c}} -(4+\lambda )q)}{2\bar{p}_{\textrm{c}} -q} }. \end{array} \end{aligned}$$
(A. 12)

When \(\bar{p}_{\textrm{c}} \in (\frac{{ 1}}{{ 2}} q,\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q)\), we have \( (3+2\lambda )\bar{p}_{\textrm{c}}^{2} -2(4+\lambda ^{2} )q\bar{p}_{\textrm{c}} +(4+\lambda ^{2} )q^{2} >0\) and \(5\bar{p}_{\textrm{c}} -(4+\lambda )q<0\) always hold. Therefore, \( \frac{\partial CS}{\partial q} <0\), \(\frac{\partial CS}{\partial \lambda } <0\). \(\square \)

Proof of Proposition (3.6)

When \(\lambda \ge \frac{1}{2} \) or \(\lambda <\frac{1}{2} \cup B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q\ge I\), it is obvious that SW increases with \(\lambda \) and q, decreases with I, while is not affected by B. When \(\lambda<\frac{1}{2} \cup B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q<I\), we have

$$\begin{aligned} \begin{array}{l} {\frac{\partial SW}{\partial q} =\frac{1}{8(1-\lambda )^{2} } (\frac{-(1-8\lambda )(2\bar{p}_\textrm{c} q\frac{\partial \bar{p}_\textrm{c} }{\partial q} -\bar{p}_\textrm{c}^{2} )}{q^{2} } -14\lambda \frac{\partial \bar{p}_\textrm{c} }{\partial q} +(4+3\lambda ^{2} ))} \\ {\;\;\;\;\;\;\;\;=-\frac{\bar{p}_\textrm{c}^{2} (1+6\lambda )-2\bar{p}_\textrm{cq}(4+3\lambda ^{2} )+(4+3\lambda ^{2} )q^{2} }{(2\bar{p}_\textrm{c}-\textrm{q})q} }\\ {\;\;\;\;\;\;\;\;=\frac{(6 \lambda ^2-6 \lambda +7)\bar{p}_\textrm{c}+(1+5\lambda -6\lambda ^2)(I-B)-(4+3\lambda ^2)q}{(2\bar{p}_\mathrm{c-q})}}. \end{array}\end{aligned}$$
(A. 13)

We now prove whether \(\frac{\partial SW}{\partial q}\) is positive or negative. \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{q}{2} }} \frac{\partial SW}{\partial q}={\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{q}{2} }} -\frac{\bar{p}_\textrm{c}^{2} (1+6\lambda )-2\bar{p}_\textrm{cq}(4+3\lambda ^{2} )+(4+3\lambda ^{2} )q^{2} }{(2\bar{p}_\mathrm{c-q})q}=-\infty <0\), \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial q} ={\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} -\frac{\bar{p}_\textrm{c}^{2} (1+6\lambda )-2\bar{p}_\textrm{cq}(4+3\lambda ^{2} )+(4+3\lambda ^{2} )q^{2} }{(2\bar{p}_\mathrm{c-q})q}=\frac{4(1-\lambda )^{2} (2-9\lambda +6\lambda ^{2} )}{3-2\lambda (5-4\lambda )} \). If \(\lambda <\frac{1}{12} (9-\sqrt{33} )\), we have \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial q} >0\), therefore, \(\frac{\partial SW}{\partial q} >0\) holds in this case. If \(\frac{1}{12} (9-\sqrt{33} )<\lambda <\frac{1}{2} \), \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial q} <0\). We can further get when \( \bar{p}_\textrm{c}>\frac{(4+3\lambda ^2)q-(1+5\lambda -6\lambda ^2)(I-B)}{6 \lambda ^2-6 \lambda +7}\) (\( \bar{p}_\textrm{c}<\frac{(4+3\lambda ^2)q-(1+5\lambda -6\lambda ^2)(I-B)}{6 \lambda ^2-6 \lambda +7}\)), \(\frac{\partial SW}{\partial q} >0(\frac{\partial SW}{\partial q} <0)\). Substituting \( \bar{p}_\textrm{c}=\frac{(4+3\lambda ^2)q-(1+5\lambda -6\lambda ^2)(I-B)}{6 \lambda ^2-6 \lambda +7}\) into \((1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\bar{p}_{\textrm{c}} +B-I\), we have \( (1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\bar{p}_{\textrm{c}} +B-I=\frac{-(1-\lambda ) \left( (1+6 \lambda )^2(I-B)^2+12 (I-B) (1-\lambda ) \left( 3 \lambda ^2+4\right) q-3 \left( 3 \lambda ^2+4\right) q^2\right) }{(7-6 (1-\lambda ) \lambda )^2 q}\). We can easily verify that \(\frac{-(1-\lambda ) \left( (1+6 \lambda )^2(I-B)^2+12 (I-B) (1-\lambda ) \left( 3 \lambda ^2+4\right) q-3 \left( 3 \lambda ^2+4\right) q^2\right) }{(7-6 (1-\lambda ) \lambda )^2 q}>0\) only when \(q>\hat{q}=\frac{\sqrt{(I-B)^2 (7-6 (1-\lambda ) \lambda )^2 \left( 3 \lambda ^2+4\right) }}{\sqrt{3} \left( 3 \lambda ^2+4\right) }+2 (I-B) (1-\lambda )\). Therefore, in this case, if \(q>\hat{q}\), we have \(\frac{\partial SW}{\partial q} >0\); otherwise, we have \(\frac{\partial SW}{\partial q} <0\).

Taking the derivative of SW with respect to \(\lambda \), we have

$$\begin{aligned}{} & {} \frac{\partial SW}{\partial \lambda }=\nonumber \\{} & {} \!\quad \frac{(6\lambda q^{2} \!-\!2(1\!-\!8\lambda )\bar{p}_{\textrm{c}} \frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } \!+\!8\bar{p}_{\textrm{c}}^{2} \!-\!14\bar{p}_{\textrm{c}} q\!-\!14\lambda q\frac{\partial \bar{p}_{\textrm{c}} }{\partial \lambda } )(1\!-\!\lambda )\!+\!2((4\!+\!3\lambda ^{2} )q^{2} \!-\!(1\!-\!8\lambda )\bar{p}_{\textrm{c}}^{2} -14\lambda \bar{p}_{\textrm{c}} q)}{8(1-\lambda )^{3} q} \nonumber \\{} & {} \!\quad =\frac{1}{8(1-\lambda )^{3} q} \frac{2(\bar{p}_{\textrm{c}} -q)^{2} ({ 7}\bar{p}_{\textrm{c}} -(4+3\lambda )q)}{2\bar{p}_{\textrm{c}} -q} . \end{aligned}$$
(A. 14)

We can obtain \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{q}{2} }} \frac{\partial SW}{\partial \lambda } <0\) and \( {\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial \lambda } { =}\frac{4(1-\lambda )^{2} (2-9\lambda +6\lambda ^{2} )}{3-2\lambda (5-4\lambda )} \). If \(\lambda <\frac{{ 1}}{{ 6}} \), \( {\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial \lambda } >0\); if \(\frac{{ 1}}{{ 6}}<\lambda <\frac{1}{2} \), \( {\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial \lambda } <0\). Therefore, \(\frac{\partial SW}{\partial \lambda } >0\) holds when and only when \(\lambda <\frac{1}{6} \) and \(\bar{p}_{\textrm{c}} >\frac{(4+3\lambda )q}{{ 7}} \); otherwise, \(\frac{\partial SW}{\partial \lambda } <0\). Substituting \(\bar{p}_{\textrm{c}} =\frac{(4+3\lambda )q}{{ 7}} \) in \((1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\bar{p}_{\textrm{c}} +B-I\), we can get \( (1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\bar{p}_{\textrm{c}} +B-I>0\) when and only when \(\lambda >\frac{49 (I-B)}{9 q}-\frac{4}{3}\). Then when \(\lambda >\frac{49 (I-B)}{9 q}-\frac{4}{3} (\lambda <\frac{49 (I-B)}{9 q}-\frac{4}{3})\), we have \( \bar{p}_{\textrm{c}} >\frac{(4+3\lambda )q}{{ 7}}(\bar{p}_{\textrm{c}} <\frac{(4+3\lambda )q}{{ 7}}) \).

We now prove \(\frac{\partial SW}{\partial B} <0\). Because \( SW=\frac{(4+3\lambda ^{2} )q^{2} -(1-8\lambda )\bar{p}_{\textrm{c}}^{2} -14\lambda \bar{p}_{\textrm{c}} q}{8(1-\lambda )^{2} q} -I\) decreases with \(\bar{p}_{\textrm{c}} \in (\frac{{ 1}}{{ 2}} q,\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q)\) and \(\frac{\partial \bar{p}_{\textrm{c}} }{\partial B} >0\), we have \(\frac{\partial SW}{\partial B} <0\).

We next prove the results about how SW is affected by I.

$$\begin{aligned} \begin{array}{l}{\frac{\partial SW}{\partial I} =\frac{-{ 2}(1-8\lambda )\bar{p}_{\textrm{c}} \frac{\partial \bar{p}_{\textrm{c}} }{\partial I} -14\lambda q\frac{\partial \bar{p}_{\textrm{c}} }{\partial I} }{8(1-\lambda )^{2} q} -1=\frac{2((4+3)\lambda q-7\bar{p}_{\textrm{c}} )}{8(1-\lambda )(2\bar{p}_{\textrm{c}} -q)} }. \end{array}\end{aligned}$$
(A. 15)

If \(\lambda \ge \frac{1}{6} \), we have \(\frac{(4+3)\lambda }{{ 7}} q\ge \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\), thus \(\frac{\partial SW}{\partial I} >0\) holds when \(\bar{p}_{\textrm{c}} \in (\frac{{ 1}}{{ 2}} q,\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q)\); if \(\lambda <\frac{1}{6} \), we have \(\frac{q}{2}<\frac{(4+3)\lambda }{{ 7}} q<\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\), thus \(\frac{\partial SW}{\partial I} >0\) when \( \bar{p}_{\textrm{c}} \in (\frac{{ 1}}{{ 2}} q,\frac{(4+3)\lambda }{{ 7}} q)\) while \(\frac{\partial SW}{\partial I} <0\) when \(\bar{p}_{\textrm{c}} \in (\frac{(4+3)\lambda }{{ 7}} q, \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q)\). Similarly, when \(I<B+\frac{3}{49} (3 \lambda +4) q\) \((I>B+\frac{3}{49} (3 \lambda +4) q)\), we can get \( \bar{p}_{\textrm{c}} >\frac{(4+3\lambda )q}{{ 7}}\) \((\bar{p}_{\textrm{c}} <\frac{(4+3\lambda )q}{{ 7}}) \). \(\square \)

Proof of Theorem (3.7)

  1. (1)

    If \(\lambda >\frac{1}{2} \), \(\Pi =\lambda q-aq^{2} -I^{{ 0}} \). By solving \(\frac{\partial \Pi }{\partial q} =0\), we get \(q^{*} =\frac{\lambda }{2a} \). Substituting \(q^{*} =\frac{\lambda }{2a} \) into \(\Pi =\lambda q-aq^{2} -I^{{ 0}} \), we have \(\Pi ^{*} =\frac{\lambda ^{2} }{4a} -I^{{ 0}} \).

  2. (2)

    If \(\lambda \le \frac{1}{2} \), (a) when \( B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q\ge I=aq^{2} +I^{{ 0}} \) (i.e. \(q\le \bar{q}_{{ 1}} \), where \(\bar{q}_{{ \textrm{1}}} \) is the positive root of \(B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q=aq^{2} +I^{{ 0}} \)), \(\Pi =\frac{1-\lambda }{3-4\lambda } q-aq^{2} -I^{{ 0}} \). By solving \(\frac{\partial \Pi }{\partial q} =0\), we get \(q=\frac{\frac{1-\lambda }{3-4\lambda } }{2a} \). Therefore, the optimal quality is \(q=\min \{ \frac{\frac{1-\lambda }{3-4\lambda } }{2a},\bar{q}_{{ 1}} \} \). Furthermore, when \(B\ge \frac{(5-4\lambda )\lambda ^{2} -1}{4(3-4\lambda )^{3} } +I^{0} \) (\(B<\frac{(5-4\lambda )\lambda ^{2} -1}{4(3-4\lambda )^{3} } +I^{{ 0}} \)), we have \( \frac{\frac{1-\lambda }{3-4\lambda } }{2a} \le \bar{q}_{{\textrm{1}}} \)(\( \frac{\frac{1-\lambda }{3-4\lambda } }{2a} >\bar{q}_{{\textrm{1}}} \)).

  3. (b)

    When \(B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q\le I=aq^{2} +I^{0} \le B+\frac{1}{4(1-\lambda )^{2} } q\), i.e., \(\bar{q}_{2} \ge q\ge \bar{q}_{{ 1}} \), we have \(\Pi =\frac{(\bar{p}_{\textrm{c}} -\lambda q)^{2} }{4q(1-\lambda )^{2} } -B\). Taking the derivative of both sides of Eq. (8) with respect to q, we can get

    $$\begin{aligned} \left( \frac{\bar{p}_{\textrm{c}} }{(1-\lambda )q^{2} } -\frac{1}{(1-\lambda )q} \frac{\partial \bar{p}_{\textrm{c}} }{\partial q} \right) \bar{p}_{\textrm{c}} +\left( 1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} \right) \frac{\partial \bar{p}_{\textrm{c}} }{\partial q} =2aq.\qquad \end{aligned}$$
    (A. 16)

    Then \(\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} =\frac{2aq-\frac{\bar{p}_{\textrm{c}}^{2} }{(1-\lambda )q^{2} } }{1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} -\frac{\bar{p}_{\textrm{c}} }{(1-\lambda )q} } =\frac{2aq(1-\lambda )q^{2} -\bar{p}_{\textrm{c}}^{2} }{q(q-2\bar{p}_{\textrm{c}} )} \). Taking the derivative of \(\Pi \) with respect to q, we have

    $$\begin{aligned} \frac{\partial \Pi }{\partial q} =\frac{2(\bar{p}_{\textrm{c}} -\lambda q)(\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} -\lambda )\times 4q(1-\lambda )^{2} -4(1-\lambda )^{2} (\bar{p}_{\textrm{c}} -\lambda q)^{2} }{16q^{2} (1-\lambda )^{4} }.\qquad \end{aligned}$$
    (A. 17)

    Substituting \(\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} \) in (A. 17), together with (8), we have

    $$\begin{aligned} \frac{\partial \Pi }{\partial q} =0\Leftrightarrow f(q)= & {} -16a^{{ 2}} (1-\lambda )q^{{ 3}} +(3a+4a(1-\lambda )\lambda )q^{2} -\lambda q\nonumber \\{} & {} \quad +(B-I^{{ 0}} )(1-2\lambda )^{2} =0, \end{aligned}$$
    (A. 18)

    then \( f'(q)=-{ 48}a^{{ 2}} (1-\lambda )q^{{ 2}} +{ 2}(3a+4a(1-\lambda )\lambda )q-\lambda \). Because \(\frac{\lambda }{6a} \) and \( \frac{{ 1}}{{ 8}a(1-\lambda )} \) are two positive roots of \( f'(q)=0\) and \(f'(q)|_{q=0} =-\lambda <0\), we get f(q) decreases in \((0,\frac{\lambda }{6a} )\), increases in \( (\frac{\lambda }{6a},\frac{{ 1}}{{ 8}a(1-\lambda )} )\), and decreases in \((\frac{{ 1}}{{ 8}a(1-\lambda )},+\infty )\). Due to \(f(0)=(B-I^{{ 0}} )(1-2\lambda )^{2} <0\) and \(f(\frac{{ 1}}{{ 8}a(1-\lambda )} )=\frac{(1+64a(B-I^{0} )(1-\lambda )^{2} )(1-2\lambda )^{2} }{64a(1-\lambda )^{2} } >0\), we can get that \( \bar{q}_{{ 3}} \) and \(\bar{q}_{{ 4}} \) (\(\bar{q}_{{ 4}} >\frac{{ 1}}{{ 8}a(1-\lambda )} \) ) are two positives roots of \( f(q)=0\). Therefore, \(\Pi \) decreases in \((0,\bar{q}_{{ 3}} )\), increases in \((\bar{q}_{{ 3}},\bar{q}_{{ 4}} )\), and decreases in \((\bar{q}_{{ 4}},+\infty )\). Then we have the maximized \(\Pi \) achieves at \(q=\bar{q}_{{ 4}} \).

Based on (1) and (2), we obtain Theorem (3.7). \(\square \)

Proof of Proposition (3.8)

When \(\lambda >\frac{1}{2} \), \(q^{*} =\frac{\lambda }{2a} \). It is obvious that \(q^{*} \) increases with \(\lambda \), decreases with a, and is not affected by B and \( I^{{ 0}} \). When \(\lambda \le \frac{1}{2} \), if \(B-I^{{ 0}} \ge \frac{n^{2} }{4a} -\frac{mn}{2a} \), \(q^{*} =\frac{n}{2a} \). Then we have \(\frac{\partial q^{*} }{\partial a} =-\frac{n}{2a^{2} } <0\), \(\frac{\partial q^{*} }{\partial \lambda } { =}\frac{1}{2(3-4\lambda )^{2} a} >0\), and \(q^{*} \) is not affected by B and \(I^{{ 0}} \). When \(\lambda \le \frac{1}{2} \) and \(B-I^{0} <\frac{n^{2} }{4a} -\frac{mn}{2a} \), taking the derivative of both sides of Eq. (A. 18) with respect to a, we get

$$\begin{aligned}{} & {} {(-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda )\frac{\partial q^{{ *}} }{\partial a} +(-32a(1-\lambda )(q^{{ *}} )^{{ 3}} } \nonumber \\{} & {} \qquad {+(3+4(1-\lambda )\lambda )(q^{*} )^{2} )=0}. \end{aligned}$$
(A. 19)

Because \(q^{*} >\frac{{ 1}}{{ 8}a(1-\lambda )} \), we have \(-{ 48}a^{{ 2}} (1-\lambda )(q^*)^{{ 2}} +{ 2}(3a+4a(1-\lambda )\lambda )q^*-\lambda <0\) and \(-32a(1-\lambda )(q^{{ *}} )^{{ 3}} +(3+4(1-\lambda )\lambda )(q^{*} )^{2} <0\). Therefore,

$$\begin{aligned} \frac{\partial q^{{ *}} }{\partial a} =-\frac{-32a(1-\lambda )(q^{{ *}} )^{{ 3}} +(3+4(1-\lambda )\lambda )(q^{*} )^{2} }{-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda } <0.\end{aligned}$$
(A. 20)

Taking the derivative of both sides of Eq. (A. 18) with respect to \(\lambda \), we get

$$\begin{aligned} \begin{array}{l}{(-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda )\frac{\partial q^{{ *}} }{\partial \lambda } +(16a^{{ 2}} (q^{{ *}} )^{{ 3}}} \\ {\qquad +4a(1-2\lambda )(q^{*} )^{2} } {-q^{*} -4(1-2\lambda )(B-I^{0} ))=0.} \end{array}\end{aligned}$$
(A. 21)

Then we have \(\frac{\partial q^{{ *}} }{\partial \lambda } =-\frac{16a^{{ 2}} (q^{{ *}} )^{{ 3}} +4a(1-2\lambda )(q^{*} )^{2} -q^{*} -4(1-2\lambda )(B-I^{0} )}{-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda }\). By solving Eq. (A. 18), we can obtain

$$\begin{aligned} B-I^{{ 0}} { =}\frac{16a^{{ 2}} (1-\lambda )(q^{{ *}} )^{{ 3}} -(3a+4a(1-\lambda )\lambda )(q^{{ *}} )^{2} +\lambda (q^{{ *}} )}{(1-2\lambda )}. \end{aligned}$$
(A. 22)

Substituting \(B-I^{{ 0}} { =}\frac{16a^{{ 2}} (1-\lambda )(q^{{ *}} )^{{ 3}} -(3a+4a(1-\lambda )\lambda )(q^{{ *}} )^{2} +\lambda (q^{{ *}} )}{(1-2\lambda )} \) into \(\frac{\partial q^{{ *}} }{\partial \lambda } \), we can get

$$\begin{aligned} \frac{\partial q^{{ *}} }{\partial \lambda } =-\frac{q^{{ *}} (4aq^{{ *}} -1)(1+2\lambda -4aq^{{ *}} (3-2\lambda ))}{(-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda )(1-2\lambda )}. \qquad \end{aligned}$$
(A. 23)

Because \(\frac{\frac{1-\lambda }{3-4\lambda } }{2a}>q^{{ *}} >\frac{{ 1}}{{ 8}a(1-\lambda )} \), we have \(q^{{ *}} (4aq^{{ *}} -1)(1+2\lambda -4aq^{{ *}} (3-2\lambda ))>0\), then \( \frac{\partial q^{{ *}} }{\partial \lambda } >0\).

Finally, taking the derivative of both sides of equation (A. 18) with respect to \(B-I^0\), we have

$$\begin{aligned} (-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda )\frac{\partial q^{{ *}} }{\partial B-I^0} +(1-2\lambda )^{2} =0.\nonumber \\ \end{aligned}$$
(A. 24)

Then \(\frac{\partial q^{{ *}} }{\partial B-I} { =}\frac{-(1-2\lambda )^{2} }{-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda } >0\) holds. \(\square \)

Proof of Theorem (4.1)

When \(\lambda >\frac{{ 1}}{{ 2}} \), the optimal decision under both strategies is \(p_{\textrm{c}} =\lambda q\), therefore \(p_{\textrm{c}}^{*} =\lambda q\). When \(\lambda \le \frac{{ 1}}{{ 2}} \cap \min \{ B+u_{l} \frac{2-3\lambda }{(3-4\lambda )^{2} } q,u_{\textrm{l}} \frac{1-\lambda }{3-4\lambda } q\} \ge I\), because the extreme point of \(\Pi _{\textrm{h}} \) is within the feasible area and \(\Pi _{\textrm{l}} \le \Pi _{\textrm{h}} \), HP is the optimal strategy.

When \(\lambda \le \frac{{ 1}}{{ 2}} \) and \(B+u_{\textrm{l}} \frac{2-3\lambda }{(3-4\lambda )^{2} } q<I\), because \(\Pi _{\textrm{h}}^{*} \) and \(\Pi _{\textrm{l}}^{*} \) are the linear functions of \( \beta \), we have \(\mathrm \Delta \Pi =\Pi _{\textrm{h}}^{*} -\Pi _{\textrm{l}}^{*} \) is also the linear function of \(\beta \). Because \(\Delta \Pi { |}_{\beta =0} =\Pi _{h}^{*} \ge 0\), we also have \(\Pi _{h} =\Pi _{\textrm{l}} \) when \(\beta =1\) and the following formula holds:

$$\begin{aligned}{} & {} { \{ }p_{\textrm{c}} |u_{\textrm{h}} { (}(1-\max \{ \frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q},0\} )p_{\textrm{c}} \ge I-B\} \nonumber \\{} & {} \qquad \supseteq { \{ }p_{\textrm{c}} |u_{\textrm{l}} { (}(1-\max \{ \frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q},0\} )p_{\textrm{c}} \ge I-B\}. \end{aligned}$$
(A. 25)

Then we can obtain \(\Delta \Pi { |}_{\beta ={ 1}} =\Pi _{\textrm{h}}^{*} -\Pi _{l}^{*} \le 0\). Therefore, there exists a threshold \( \bar{\beta }\) such that \(\Pi _{\textrm{h}}^{*} \ge \Pi _{\textrm{l}}^{*} \) when \(\beta \le \bar{\beta }\) and \(\Pi _{\textrm{h}}^{*} <\Pi _{\textrm{l}}^{*} \) when \(\beta >\bar{\beta }\). \(\square \)

Proof of Theorem (4.2)

First, when \(\lambda >\frac{{ 1}}{{ 2}} \) and \(I\le \lambda q\), the creator will not need loans, so the optimal price is \( p_{\textrm{c}}^{*} =\lambda q\).

Second, when \(\lambda \le \frac{{ 1}}{{ 2}} \) and \(\min \{ B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q,\frac{1-\lambda }{3-4\lambda } q\} \ge I\), because the sum of raised funds in crowdfunding stage and initial funds is enough to cover the cost, the creator will not need loans so the optimal price in this case is the same as that in the case without capital-constraint, i.e., \( p_{\textrm{c}}^{*} =\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q,{ \; }p_{\textrm{r}}^{*} =\frac{1-2\lambda }{3-4\lambda } q\).

Third, when \( \lambda \le \frac{{ 1}}{{ 2}} \) and \( B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q<I\), the profit is

$$\begin{aligned} \Pi =(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} +(\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} -\frac{p_{\textrm{r}} }{q} )p_{\textrm{r}} -I-rA. \end{aligned}$$
(A. 26)

By transforming inequality (22), we obtain \(A\ge I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} \). If \(I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} \le { 0}\), \(A=0\) is the optimal loan amounts, i.e., the creator will not need loans. Then the optimal prices are \(p_{\textrm{c}} =\bar{p}_{\textrm{c}} \), \(p_{\textrm{r}} =\frac{\bar{p}_{\textrm{c}} -\lambda q}{2(1-\lambda )} \), and \(\Pi =\frac{(\bar{p}_{\textrm{c}} -\lambda q)^{2} }{4q(1-\lambda )^{2} } -B\); if \(I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} >0\), because \(\Pi \) decreases with r, the optimal loan amounts is \(A=I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} \) and

$$\begin{aligned} \Pi =(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} +(\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} -\frac{p_{\textrm{r}} }{q} )p_{\textrm{r}} -I-r(I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} ).\end{aligned}$$
(A. 27)

By solving \(\frac{\partial \Pi }{\partial p_{\textrm{c}} } =0\) and \( \frac{\partial \Pi }{\partial p_{\textrm{r}} } =0\), we can get \(p_{\textrm{c}} =\frac{q(2+2r(1-\lambda )-3\lambda )}{3+4r(1-\lambda )-4\lambda } \) and \(p_{\textrm{r}} =\frac{q(1+r)(1-2\lambda )}{3+4r(1-\lambda )-4\lambda } \). Substituting \(p_{\textrm{c}} =\frac{q(2+2r(1-\lambda )-3\lambda )}{3+4r(1-\lambda )-4\lambda } \) and \(p_{\textrm{r}} =\frac{q(1+r)(1-2\lambda )}{3+4r(1-\lambda )-4\lambda } \) into \( \Pi \), we have

$$\begin{aligned} \Pi =(1+\frac{(1+2r)^{2} }{3+4r(1-\lambda )-4\lambda } )q-I(1+r)+rB. \end{aligned}$$
(A. 28)

Because \(\Pi =(1+\frac{(1+2r)^{2} }{3+4r(1-\lambda )-4\lambda } )q-I(1+r)+rB\) decreases with r, we have \({\mathop {\lim }\limits _{r\rightarrow 0}} (1+\frac{(1+2r)^{2} }{3+4r(1-\lambda )-4\lambda } )q-I(1+r)+rB=\frac{1-\lambda }{3-4\lambda } q-I>\frac{(\bar{p}_{\textrm{c}} -\lambda q)^{2} }{4q(1-\lambda )^{2} } -B\) and \({\mathop {\lim }\limits _{r-\rightarrow \infty }} (1+\frac{(1+2r)^{2} }{3+4r(1-\lambda )-4\lambda } )q-I(1+r)+rB<0\). Therefore, there exists a \( \bar{r}\) such that when \(r\ge \bar{r}\), the creator will not borrow loans and set \(p_{\textrm{c}}^{*} =\bar{p}_{\textrm{c}} \) and \( p_{\textrm{r}}^{*} =\frac{\bar{p}_{\textrm{c}} -\lambda q}{2(1-\lambda )} \); when \( r<\bar{r}\), the creator will borrow loans and set \(p_{\textrm{c}}^{*} =\frac{q(2+2r(1-\lambda )-3\lambda )}{3+4r(1-\lambda )-4\lambda } \), \(p_{\textrm{r}}^{*} =\frac{q(1+r)(1-2\lambda )}{3+4r(1-\lambda )-4\lambda } \). \(\square \)

Proof of Theorem (4.3)

When \(\lambda >\frac{{ 1}}{{ 2}} (1+e)\), setting \(p_{\textrm{c}} =\lambda q\) under HS strategy is better than setting \(p_{\textrm{c}} { =} ((1-\lambda )\frac{e}{1+e} +\lambda )q\) under LS strategy; therefore, \(p_{\textrm{c}}^{*} =\lambda q\). When \(\frac{{ 1}}{{ 2}} (1+e)\ge \lambda >\frac{{ 1}}{{ 2}} (1-e^{2} )\), setting \(p_{\textrm{c}} { =}\frac{(1+e-(1-e)\lambda )q}{2(1+e-\lambda )} \) under HS strategy is better than that setting \(p_{\textrm{c}} { =}((1-\lambda )\frac{e}{1+e} +\lambda )q\) under LS strategy; therefore, we have \(p_{\textrm{c}}^{*} { =}\frac{(1+e-(1-e)\lambda )q}{2(1+e-\lambda )} \) and \(p_{\textrm{r}}^{*} =e(1-\bar{\theta })q=\frac{e(1+e)q}{2(1+e-\lambda )} \); when \(\lambda \le \frac{{ 1}}{{ 2}} (1-e^{2} )\), setting \(p_{\textrm{c}} =\frac{(-2+e^{2} +3\lambda -e(1+\lambda ))}{-3+4\lambda -(2-e)e} q\) under LS strategy is better than setting \(p_{\textrm{c}} =((1-\lambda )\frac{e}{1+e} +\lambda )q\) under HS strategy; therefore, we have \(p_{\textrm{c}}^{*} { =}\frac{(1+e-(1-e)\lambda )q}{2(1+e-\lambda )} \) and \(p_{\textrm{r}}^{*} =\frac{\bar{\theta }+e(1-\bar{\theta })}{2} q=\frac{{ 1}+e-2\lambda }{3+(2-e)e-4\lambda } q\). \(\square \)

Proof of Proposition (4.4)

When \(\lambda >\frac{{ 1}}{{ 2}} (1+e)\), \(p_{\textrm{c}}^{*} \) is not influenced by e; when \(\frac{{ 1}}{{ 2}} (1+e)\ge \lambda >\frac{{ 1}}{{ 2}} (1-e^{2} )\), we have \(\frac{\partial p_{c}^{*} }{\partial e} =\frac{(1-\lambda )\lambda q}{2(1+e-\lambda )^{2} } >0\) and \(\frac{\partial p_{\textrm{r}}^{*} }{\partial e} =\frac{q((1+e)^{2} -(1+2e)\lambda )}{2(1+e-\lambda )^{2} } >0\). When \(\lambda \le \frac{{ 1}}{{ 2}} (1-e^{2} )\), \(\frac{\partial p_{\textrm{c}}^{*} }{\partial e} =-\frac{q((1+e)^{2} -4\lambda )(1-\lambda )}{(-3+4\lambda -(2-e)e)^{2} } \). Therefore, if \(\lambda <\min \{ \frac{(1+e)^{2} }{{ 4}},\frac{{ 1}}{{ 2}} (1-e^{2} )\} \), \( \frac{\partial p_{\textrm{c}}^{*} }{\partial e} <0\); if \(\frac{(1+e)^{2} }{{ 4}} <\lambda \le \frac{{ 1}}{{ 2}} (1-e^{2} )\), \( \frac{\partial p_{\textrm{c}}^{*} }{\partial e} >0\); \(\frac{\partial p_{\textrm{r}}^{*} }{\partial e} =\frac{q((1+e)^{2} -4e\lambda )}{(-3+4\lambda -(2-e)e)^{2} } >0\) always holds. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, X. & Zhou, Q. Pricing and Quality Strategies in Crowdfunding with Network Externality. J Optim Theory Appl 196, 98–125 (2023). https://doi.org/10.1007/s10957-022-02117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02117-9

Keywords

Mathematics Subject Classification

Navigation