Skip to main content
Log in

Projected Splitting Methods for Vertical Linear Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we generalize the projected Jacobi and the projected Gauss–Seidel methods to vertical linear complementarity problems (VLCPs) characterized by matrices with positive diagonal entries. First, we formulate the methods and show that the subproblems that must be solved at each iteration have an explicit solution, which is easy to compute. Then, we prove the convergence of the proposed procedures when the matrices of the problem satisfy some assumptions of strict or irreducible diagonal dominance. In this context, for simplicity, we first analyze the convergence in the special case of VLCPs of dimension \(2n\times n\), and we then generalize the results to VLCPs of an arbitrary dimension \(\ell n\times n\). Finally, we provide several numerical experiments (involving both full and sparse matrices) that show the effectiveness of the proposed approaches. In this context, our methods are compared with existing solution methods for VLCPs. A parallel implementation of the projected Jacobi method in CUDA is also presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

The data generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahn, B.H.: Solution of nonsymmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 33(2), 175–185 (1981)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math. 63(3–4), 309–326 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods. Réseaux et Systèmes Répartis: Calculateurs Parallèles 13(1), 125–154 (2001)

    Google Scholar 

  6. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods. Int. J. Comput. Math. 79(2), 205–232 (2002)

    Article  MathSciNet  Google Scholar 

  7. Bai, Z.-Z., Zhang, L.L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

    Article  MathSciNet  Google Scholar 

  8. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, U.S.A (2013)

  9. Cottle, R., Pang, J.-S.: On the convergence of a block successive overrelaxation method for a class of linear complementarity problems. Math. Program. Stud. 17, 126–138 (1980)

    Article  MathSciNet  Google Scholar 

  10. Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Combin. Theory 8, 79–90 (1970)

    Article  MathSciNet  Google Scholar 

  11. Cryer, C.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 9, 385–392 (1971)

    Article  MathSciNet  Google Scholar 

  12. Dai, P.-F.: A fixed point iterative method for tensor complementarity problems. J. Sci. Comput. 84(49), 1–20 (2020)

    MathSciNet  Google Scholar 

  13. Ebiefung, A., Habetler, G., Kostreva, M., Szanc, B.: A direct algorithm for the vertical generalized complementarity problem associated with \(P\)-matrices. Open J. Optim. 6, 101–105 (2017)

    Article  Google Scholar 

  14. Ebiefung, A.A.: Nonlinear mappings associated with the generalized linear complementarity problem. Math. Program. 69, 255–268 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Ebiefung, A.A., Kostreva, M.M.: Generalized \(P_0\)- and \(Z\)-matrices. Linear Algebra Appl. 195, 165–179 (1993)

    Article  MathSciNet  Google Scholar 

  16. Edalatpour, V., Hezari, D., Salkuyeh, D.K.: A generalization for solving absolute value equations. Appl. Math. Comput. 293, 156–167 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Erleben, K., Andersen, M., Niebe, S., Silcowitz, M.: num4lcp. Published online at code.google.com/p/num4lcp/ (2011)

  18. Fujisawa, T., Kuh, E.S.: Piecewise-linear theory of nonlinear networks. SIAM J. Appl. Math. 22, 307–328 (1972)

    Article  MathSciNet  Google Scholar 

  19. Fujisawa, T., Kuh, E.S., Ohtsuki, T.: A sparse matrix method for analysis of piecewise-linear resistive networks. IEEE Trans. Circuit Theory 19, 571–584 (1972)

    Article  MathSciNet  Google Scholar 

  20. Gowda, M.S., Sznajder, R.: The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl. 15, 779–795 (1994)

    Article  MathSciNet  Google Scholar 

  21. Jiang, M., Dong, J.: On the convergence of two-stage splitting methods for linear complementarity problems. J. Comput. Appl. Math 181, 58–69 (2005)

    Article  MathSciNet  Google Scholar 

  22. Mangasarian, O.L.: Solution of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 22(4), 465–485 (1977)

    Article  MathSciNet  Google Scholar 

  23. Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theory Appl. 180(2), 500–517 (2019)

    Article  MathSciNet  Google Scholar 

  24. Mezzadri, F., Galligani, E.: A generalization of irreducibility and diagonal dominance with applications to horizontal and vertical linear complementarity problems. Linear Algebra Appl. 621, 214–234 (2021)

    Article  MathSciNet  Google Scholar 

  25. Mohan, S.R., Neogy, S.K.: Algorithms for the generalized linear complementarity problem with a vertical block \(z\)-matrix. SIAM J. Optim. 6(4), 994–1006 (1996)

    Article  MathSciNet  Google Scholar 

  26. Mohan, S.R., Neogy, S.K.: Vertical block hidden \({Z}\)-matrices and the generalized linear complementarity problem. SIAM J. Matrix Anal. Appl. 18(1), 181–190 (1997)

    Article  MathSciNet  Google Scholar 

  27. Mohan, S.R., Neogy, S.K., Sridhar, R.: The generalized linear complementarity problem revisited. Math. Program. 197–218 (1996)

  28. Nagae, T., Akamatsu, T.: A generalized complementarity approach to solving real option problems. J. Econ. Dyn. Control 32, 1754–1779 (2008)

    Article  MathSciNet  Google Scholar 

  29. Niebe, S., Erleben, K.: Numerical Methods for Linear Complementarity Problems in Physics-Based Animation. Synthesis Lectures on Computer Graphics and Animation. Morgan & Claypool (2015)

  30. Pang, J.-S.: The implicit complementarity problem. In: Mangasarian, O.L., Meyer, R.R., and Robinson, S.M. (eds.) Nonlinear Programming 4. Academic Press, New York (1981)

  31. Pang, J.-S.: On the convergence of a basic iterative method for the implicit complementarity problem. J. Optim. Theory Appl. 37(2), 149–162 (1982)

    Article  MathSciNet  Google Scholar 

  32. Peng, J.-M., Lin, Z.: A non-interior continuation method for generalized linear complementarity problems. Math. Program. Ser. A 86, 533–563 (1999)

    Article  MathSciNet  Google Scholar 

  33. Ping, Z.-L., You, G.-Z.: Global linear and quadratic one-step smoothing Newton method for vertical linear complementarity problems. Appl. Math. Mech. (English Ed.) 24(6), 738–746 (2003)

    Article  MathSciNet  Google Scholar 

  34. Qi, H.-D., Liao, L.-Z.: A smoothing Newton method for extended vertical linear complementarity problems. SIAM J. Matrix Anal. Appl. 21(1), 45–66 (1999)

    Article  MathSciNet  Google Scholar 

  35. Sun, M.: Singular control problems in bounded intervals. Stochastics 21, 303–344 (1987)

    Article  MathSciNet  Google Scholar 

  36. Sun, M.: Monotonicity of Mangasarian‘s iterative algorithm for generalized linear complementarity problems. J. Math. Anal. Appl. 144, 249–260 (1989)

    Article  MathSciNet  Google Scholar 

  37. Sznajder, R., Gowda, M.S.: Generalizations of \({P}_0\)- and \({P}\)-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 695–715 (1995)

    Article  Google Scholar 

  38. Zheng, H., Li, W.: The modulus-based nonsmooth Newton‘s method for solving linear complementarity problems. J. Comput. Appl. Math 288, 116–126 (2015)

    Article  MathSciNet  Google Scholar 

  39. Zheng, H., Vong, S.: The modulus-based nonsmooth Newton‘s method for solving a class of nonlinear complementarity problems of \({P}\)-matrices. Calcolo 55(37), 1–17 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors desire to thank the anonymous referees for their helpful comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Galligani.

Additional information

Communicated by Qamrul Hasan Ansari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzadri, F., Galligani, E. Projected Splitting Methods for Vertical Linear Complementarity Problems. J Optim Theory Appl 193, 598–620 (2022). https://doi.org/10.1007/s10957-021-01922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01922-y

Keywords

Mathematics Subject Classification

Navigation