Skip to main content
Log in

Lagrange Multiplier Characterizations of Constrained Best Approximation with Infinite Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we first employ the subdifferential closedness condition and Guignard’s constraint qualification to present “dual cone characterizations” of the constraint set \( \varOmega \) with infinite nonconvex inequality constraints, where the constraint functions are Fréchet differentiable that are not necessarily convex. We next provide sufficient conditions for which the “strong conical hull intersection property” (strong CHIP) holds, and moreover, we establish necessary and sufficient conditions for characterizing “perturbation property” of the best approximation to any \(x \in {\mathcal {H}}\) from the convex set \( \tilde{\varOmega }:=C \cap \varOmega \) by using the strong CHIP of \(\lbrace C,\varOmega \rbrace ,\) where C is a non-empty closed convex set in the Hilbert space \({\mathcal {H}}.\) Finally, we derive the “Lagrange multiplier characterizations” of constrained best approximation under the subdifferential closedness condition and Guignard’s constraint qualification. Several illustrative examples are presented to clarify our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansari, Q.H., Köbis, E., Yao, J.-C.: Vector Variational Inequalities and Vector Optimization: Theory and Applications. Springer, Berlin (2018)

    Book  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017)

    Book  Google Scholar 

  3. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. John Wiley, New York (2006)

    Book  Google Scholar 

  4. Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  5. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  6. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd edn. Springer, New York (2000)

    Book  Google Scholar 

  7. Cánovas, M.J., López, M.A., Mordukhovich, B.S., Parra, J.: Variational analysis in semi-infinite and infinite programming, I: stability of linear inequality systems of feasible solutions. SIAM J. Optim. 20, 1504–1526 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cánovas, M.J., López, M.A., Mordukhovich, B.S., Parra, J.: Variational analysis in semi-inifinite and infinite programming, II: necessary optimality conditions. SIAM J. Optim. 20, 2788–2806 (2010)

    Article  MathSciNet  Google Scholar 

  9. Deutsch, F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)

    Book  Google Scholar 

  10. Deutsch, F., Li, W., Ward, J.D.: A dual approach to constrained interpolation from a convex subset of Hilbert space. J. Approx. Theory 90, 385–444 (1997)

    Article  MathSciNet  Google Scholar 

  11. Deutsch, F., Li, W., Ward, J.D.: Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property. SIAM J. Optim. 10, 252–268 (1999)

    Article  MathSciNet  Google Scholar 

  12. Gadhi, N.A.: Necessary optimality conditions for a nonsmooth semi-infinite programming problem. J. Global Optim. (2019). https://doi.org/10.1007/s10898-019-00742-9

  13. Ghafari, N., Mohebi, H.: Optimality conditions for nonconvex problems over nearly convex feasible sets. Arab. J. Math. (2021). https://doi.org/10.1007/s40065-021-00315-3

  14. Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. John Wiley, Chichester, UK (1998)

    MATH  Google Scholar 

  15. Goberna, M.A., López, M.A.: Linear semi-infinite programming theory: an updated survey. Eur. J. Oper. Res. 143, 390–405 (2002)

    Article  MathSciNet  Google Scholar 

  16. Ho, Q.: Necessary and sufficient KKT optimality conditions in non-convex optimization. Optim. Lett. 11, 41–46 (2017)

    Article  MathSciNet  Google Scholar 

  17. Hoheisel, T., Kanzow, C.: On the Abadie and Guignard constraint qualifications for mathematical programs with vanishing constraints. Optimization 58, 413–448 (2009)

    Article  MathSciNet  Google Scholar 

  18. Jeyakumar, V., Mohebi, H.: Limiting \(\varepsilon \)- subgradient characterizations of constrained best approximation. J. Approx. Theory 135, 145–159 (2005)

    Article  MathSciNet  Google Scholar 

  19. Jeyakumar, V., Mohebi, H.: A global approach to nonlinearly constrained best approximation. Numer. Funct. Anal. Optim. 26, 205–227 (2005)

    Article  MathSciNet  Google Scholar 

  20. Jeyakumar, V., Mohebi, H.: Characterizing best approximation from a convex set without convex representation. J. Approx. Theory 239, 113–127 (2019)

    Article  MathSciNet  Google Scholar 

  21. Li, W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7, 966–978 (1997)

    Article  MathSciNet  Google Scholar 

  22. Li, W., Nahak, C., Singer, I.: Constraint qualifications for semi-infinite systems of convex inequalities. SIAM J. Optim. 11, 615–542 (2000)

    Article  MathSciNet  Google Scholar 

  23. Li, C., Ng, K.F.: On best approximation by nonconvex sets and perturbation of nonconvex inequality systems in Hilbert spaces. SIAM J. Optim. 13, 726–744 (2002)

    Article  MathSciNet  Google Scholar 

  24. Li, C., Ng, K.F.: Constraint qualification, the strong CHIP, and best approximation with convex constraints in Banach spaces. SIAM J. Optim. 14, 584–607 (2003)

    Article  MathSciNet  Google Scholar 

  25. Li, C., Ng, K.F.: On constraint qualification for an infinite system of convex inequalities in a Banach space. SIAM J. Optim. 15, 488–512 (2005)

    Article  MathSciNet  Google Scholar 

  26. Li, C., Ng, K.F.: Strong CHIP for infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 16, 311–340 (2005)

    Article  MathSciNet  Google Scholar 

  27. Li, C., Jin, X.-Q.: Nonlinearly constrained best approximation in Hilbert spaces: the strong CHIP, and the basic constraint qualification. SIAM J. Optim. 13, 228–239 (2002)

    Article  MathSciNet  Google Scholar 

  28. López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  MathSciNet  Google Scholar 

  29. Mohebi, H., sheikhsamani, M.: Characterizing nonconvex constrained best approximation using Robinson’s constraint qualification. Optim. Lett. (2019). doi.org/10.1007/s11590-018-1317-z

  30. Mordukhovich, B.S.: Variational Analysis and Applications. Springer (2018)

  31. Mordukhovich, B.S., Nghia, T.T.A.: Constraint qualifications and optimality conditions for nonconvex semi-infinite and infinite programs. Math. Program. Ser. B 139, 271–300 (2013)

    Article  MathSciNet  Google Scholar 

  32. Mordukhovich, B.S., Phan, H.M.: Tangential extremal principles for finite and infinite systems of sets II: applications to semi-infinite and multiobjective optimization. Math. Program. Ser. B 136, 31–63 (2012)

    Article  MathSciNet  Google Scholar 

  33. Peterson, D.W.: A review of constraint qualifications in finite-dimensional spaces. SIAM Rev. 15, 639–654 (1973)

    Article  MathSciNet  Google Scholar 

  34. Shapiro, A.: On duality theory of convex semi-infinite programming. Optimization 54, 535–543 (2005)

    Article  MathSciNet  Google Scholar 

  35. Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer-Verlag, New York (1970)

    Book  Google Scholar 

  36. Tiba, D., Zălinescu, C.: On the necessity of some constraint qualification conditions in convex programming. J. Convex Anal. 11, 95–110 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the two anonymous referees and the Associate Editor for their valuable comments regarding an earlier version of this paper. The comments of the referees and the Associate Editor were very useful and they helped us to improve the paper significantly. This research was partially supported by Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Iran, Grant No. 97/3267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mohebi.

Additional information

Communicated by Marco Antonio López-Cerdá.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtiari, H., Mohebi, H. Lagrange Multiplier Characterizations of Constrained Best Approximation with Infinite Constraints. J Optim Theory Appl 189, 814–835 (2021). https://doi.org/10.1007/s10957-021-01856-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01856-5

Keywords

Mathematics Subject Classification

Navigation