Skip to main content
Log in

On the Extension of Continuous Quasiconvex Functions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study the problem of extending continuous quasiconvex real-valued functions from a subspace of a real normed linear space. Our results are essentially finite-dimensional and are based on a technical lemma which permits to “extend” a nested family of open convex subsets of a given subspace to a nested family of open convex sets in the whole space, in such a way that certain topological conditions are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Finetti, B.: Sulle stratificazioni convesse. Ann. Mat. Pura Appl. 30, 173–183 (1949)

    Article  MathSciNet  Google Scholar 

  2. Fenchel, W.: Convex Cones, Sets, and Functions, Lecture Notes. Princeton University, New Jersey (1953)

    MATH  Google Scholar 

  3. Arrow, K.J., Enthoven, A.C.: Quasi-concave programming. Econometrica 29, 779–800 (1961)

    Article  MathSciNet  Google Scholar 

  4. Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized concavity, Classics in Applied Mathematics, No. 63, reprint of the 1988 original, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2010)

  5. Greenberg, H., Pierskalla, W.: A review of Quasi-convex functions. Oper. Res. 19, 1553–1570 (1971)

    Article  Google Scholar 

  6. Penot, J.-P.: What is quasiconvex analysis? Optimization 47, 35–110 (2000)

    Article  MathSciNet  Google Scholar 

  7. Crouzeix, J.P.: Some differentiability properties of quasiconvex functions on \({ R}^{n}\). Optimization and Optimal Control, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin vol. 30, pp. 9–20 (1981)

  8. Deák, E.: Über konvexe und interne Funktionen, sowie eine gemeinsame Verallgemeinerung von beiden. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 5, 109–154 (1962)

    MathSciNet  MATH  Google Scholar 

  9. Rabier, J.-P.: Points of continuity of quasiconvex functions on topological vector spaces. J. Convex Anal. 20, 701–721 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Rabier, J.-P.: Quasiconvexity and density topology. Canad. Math. Bull. 57, 178–187 (2014)

    Article  MathSciNet  Google Scholar 

  11. Rabier, J.-P.: Differentiability of quasiconvex functions on separable Banach spaces. Israel J. Math. 207, 11–51 (2015)

    Article  MathSciNet  Google Scholar 

  12. Tišer, J., Zajíček, L.: A criterion of \(\varGamma \)-nullness and differentiability of convex and quasiconvex functions. Studia Math. 227, 149–164 (2015)

    Article  MathSciNet  Google Scholar 

  13. Borwein, J., Vanderwerff, J.: On the continuity of biconjugate convex functions. Proc. Am. Math. Soc. 130, 1797–1803 (2002)

    Article  MathSciNet  Google Scholar 

  14. Borwein, J., Montesinos, V., Vanderwerff, J.: Boundedness, differentiability and extensions of convex functions. J. Convex Anal. 13, 587–602 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Veselý, L., Zajíček, L.: On extensions of dc functions and convex functions. J. Convex Anal. 17, 427–440 (2010)

    MathSciNet  MATH  Google Scholar 

  16. De Bernardi, C.A., Veselý, L.: Extension of continuous convex functions from subspaces I. J. Convex Anal. 21, 1065–1084 (2014)

    MathSciNet  MATH  Google Scholar 

  17. De Bernardi, C.A., Veselý, L.: Extension of continuous convex functions from subspaces II. J. Convex Anal. 22, 101–116 (2015)

    MathSciNet  MATH  Google Scholar 

  18. De Bernardi, C.A.: A note on the extension of continuous convex functions. J. Convex Anal. 24, 333–347 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Klee, V.L.: Convex sets in linear spaces. Duke Math. J. 18, 443–466 (1951)

    Article  MathSciNet  Google Scholar 

  20. Klee, V.L.: Polyhedral sections of convex bodies. Acta Math. 103, 243–267 (1960)

    Article  MathSciNet  Google Scholar 

  21. Fonf, V.P., Lindenstrauss, J., Phelps, R.R.: Infinite dimensional convexity, Handbook of the Geometry of Banach Spaces, vol. I, North-Holland, Amsterdam, pp. 599–670 (2001)

  22. Lindenstrauss, J.: Notes on Klee’s paper: “Polyhedral sections of convex bodies”. Israel J. Math. 4, 235–242 (1966)

    Article  MathSciNet  Google Scholar 

  23. Fonf, V.P., Veselý, L.: Infinite dimensional polyhedrality. Canad. J. Math. 56, 472–494 (2004)

    Article  MathSciNet  Google Scholar 

  24. De Bernardi, C.A.: Extreme points in polyhedral Banach spaces. Israel J. Math. 220, 547–557 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of the author is partially supported by GNAMPA-INdAM, Project GNAMPA 2020. The author would like to thank M. Bianchi, E. Miglierina, and R. Pini for many discussions on the subject and for useful comments and remarks that helped him in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Alberto De Bernardi.

Additional information

Communicated by Nicolas Hadjisavvas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bernardi, C.A. On the Extension of Continuous Quasiconvex Functions. J Optim Theory Appl 187, 421–430 (2020). https://doi.org/10.1007/s10957-020-01767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01767-x

Keywords

Mathematics Subject Classification

Navigation