Skip to main content
Log in

Optimal Dividend and Capital Structure with Debt Covenants

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider an optimal dividend and capital structure problem for a firm, which holds a certain amount of debt to which is associated a financial ratio covenant between the firm and its creditors. We study optimal policies under a bankruptcy framework, using a mixed reduced and structural approach in modeling default and liquidation times. Once in default, the firm is given a grace period during which it may inject more capital to correct the situation. The firm is liquidated if, by the end of the grace period, assets do not exceed the debt. Under this setup, we maximize the discounted amount of dividends distributed minus the capital injected up to the time of liquidation. It gives rise to a two-dimensional singular control problem leading to a non-standard system of variational inequalities. Beyond the usual viscosity characterization, we completely solve this problem and obtain a description of the continuation, dividend and capital injection regions enabling us to fully characterize the optimal policies. We conclude the paper with numerical results and illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Although it may not make sense for a financial point of view, we allow the initial duration \(\varXi _0\) to take any value less than \(\delta \) to take advantage of time homogeneity and to simplify the dynamic programming principle.

References

  1. Merton, R.C.: On the pricing of corporate debt: the risk structure of interest rates. J. Finance 29, 449–70 (1974)

    Google Scholar 

  2. Black, F., Cox, J.C.: Valuing corporate securities: some effects of bond indenture provisions. J. Finance 31, 351–367 (1976)

    Article  Google Scholar 

  3. Jeanblanc, M., Shiryaev, A.: Optimization of the flow of dividends. Russ. Math. Surv. 50, 257–277 (1995)

    Article  MathSciNet  Google Scholar 

  4. Asmussen, S., Taksar, M.: Controlled diffusion models for optimal dividend pay-out. Insur. Math. Econ. 20, 1–15 (1997)

    Article  MathSciNet  Google Scholar 

  5. Choulli, T., Taksar, M., Zhou, X.Y.: A diffusion model for optimal dividend distribution for a company with constraints on risk control. SIAM J. Control Optim. 41, 1946–1979 (2003)

    Article  MathSciNet  Google Scholar 

  6. Choulli, T., Taksar, M., Zhou, X.Y.: Interplay between dividend rate and business constraints for a financial corporation. Ann. Appl. Probab. 14, 1810–1837 (2004)

    Article  MathSciNet  Google Scholar 

  7. Sethi, S.P., Taksar, M.I.: Optimal financing of a corporation subject to random returns. Math. Finance 12, 155–172 (2002)

    Article  MathSciNet  Google Scholar 

  8. Décamps, J.P., Villeneuve, S.: Optimal dividend policy and growth option. Finance Stoch. 11(1), 3–27 (2007)

    Article  MathSciNet  Google Scholar 

  9. Ly Vath, V., Pham, H., Villeneuve, S.: Mixed singular/switching control problem for a dividend policy with reversible technology investment. Ann. Appl. Probab. 18, 1164–1200 (2008)

    Article  MathSciNet  Google Scholar 

  10. Jin, Z., Yin, G., Zhu, C.: Numerical solutions of optimal risk control and dividend optimization policies under a generalized singular control formulation. Automatica 48(8), 1489–1501 (2012)

    Article  MathSciNet  Google Scholar 

  11. Chevalier, E., Gaigi, M., Ly Vath, V.: Liquidity risk and optimal dividend/investment strategies. Math. Financ. Econ. 11(1), 111–135 (2017)

    Article  MathSciNet  Google Scholar 

  12. Chevalier, E., Ly Vath, V., Scotti, S.: An optimal dividend and investment control problem under debt constraints. SIAM J. Financ. Math. 4, 297–326 (2013)

    Article  MathSciNet  Google Scholar 

  13. Pierre, E., Villeneuve, S., Warin, X.: Liquidity management with decreasing-returns- to-scale and secured credit line. Finance Stoch. 20(4), 809–854 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lokka, A., Zervos, M.: Optimal dividend and issuance of equity policies in the presence of proportional costs. Insur. Math. Econ. 42, 954–961 (2008)

    Article  MathSciNet  Google Scholar 

  15. Décamps, J.-P., Mariotti, T., Rochet, J.-C., Villeneuve, S.: Free cash flow, issuance costs, and stock prices. J. Finance 66–5, 1501–1544 (2011)

    Article  Google Scholar 

  16. Jin, Z., Yang, H., Yin, G.: Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital injections. Automatica 49, 2317–2329 (2013)

    Article  MathSciNet  Google Scholar 

  17. Jin, Z., Yin, G.: An optimal dividend policy with delayed capital injections. ANZIAM J. 55, 129–150 (2013)

    Article  MathSciNet  Google Scholar 

  18. Keppo, J., Peura, S.: Optimal bank capital with costly recapitalization. J. Bus. 79(4), 2163–2201 (2006)

    Article  Google Scholar 

  19. Bolton, P., Chen, H., Wang, N.: Market timing, investment, and risk management. J. Financ. Econ. 109, 40–62 (2013)

    Article  Google Scholar 

  20. Hugonnier, J., Malamud, S., Morellec, E.: Capital supply uncertainty, cash holdings and investment. Rev. Financ. Stud. 28, 391–445 (2015)

    Article  Google Scholar 

  21. Makarov, R.N., Metzler, A., Ni, Z.: Modelling default risk with occupation times. Finance Res. Lett. 13, 54–65 (2015)

    Article  Google Scholar 

  22. Yildirim, Y.: Modeling default risk: a new structural approach. Finance Res. Lett. 3, 165–172 (2006)

    Article  Google Scholar 

  23. Broadie, M., Chernov, M., Sundaresan, S.: Optimal debt and equity values in the presence of Chapter 7 and Chapter 11. J. Finance 62(3), 1341–1377 (2007)

    Article  Google Scholar 

  24. Kushner, H., Dupuis, P.G.: Numerical Methods for Stochastic Control Problems in Continuous Time. Stochastic Modelling and Applied Probability, vol. 24, 2nd edn. Springer, New York (2013)

    Google Scholar 

  25. Budhiraja, A., Ross, K.: Convergent numerical scheme for singular stochastic control with state constraints in a portfolio selection problem. SIAM J. Control Optim. 45(6), 2169–2206 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vathana Ly Vath.

Additional information

Communicated by Lars Grüne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 3.1

Appendix: Proof of Theorem 3.1

Proof

Equations 19 and (20) follow from Proposition 2.2. The proof of the supersolution property is classical, so we omit it and focus on the subsolution property.

Let \((\varsigma ,x,y) \in \mathring{\mathcal S}^1\times \mathring{{\mathcal {S}}}^0\). Let \(\psi _0 \in C^{2}(\mathring{{\mathcal {S}}}^0)\) and \(\psi _1 \in C^{1,2}(\mathring{{\mathcal {S}}}^1)\) such that \(\psi _1(\varsigma ,x) = v_1(\varsigma ,x)\), \(\psi _0(y)=v_0(y)\) and \(\psi _i \ge v_i,\) \(i=0,1.\) We have to prove that \((\psi _0,\psi _1)\) satisfies (15)–(18) with \(=\) replaced by \(\ge .\) Suppose that it is not true:

Case (1) Assume that inequality associated with (16) is not satisfied.

There exists \(\eta >0\) such that

$$\begin{aligned} \rho \psi _1(\varsigma ,x) - {\mathcal {L}}\psi _1(\varsigma ,x) -\frac{\partial \psi _1}{\partial \varsigma }(\varsigma ,x)> \eta , \text{ and } (1-\kappa _1) \frac{\partial \psi _1}{ \partial x} (\varsigma ,x)< & {} 1-\eta . \end{aligned}$$
(47)

Since \(\psi _1 \in C^{1,2}(\mathring{{\mathcal {S}}}^1)\), we can assume that there exists \(\epsilon >0\) (\(\epsilon <\min (x,D-x,\varsigma ,\delta -\varsigma )\)) such that the above inequality is also satisfied for all (sz) such that \(|x-z|^2 + |s-\varsigma | \le \epsilon .\)

Let \((Z,K) \in {\mathcal {A}}\). Then, if we set \( \theta := \inf \{t \ge 0 : |X^x_t - x |^2 + \varXi _t - \varsigma > \epsilon \}\), we have \(|X_\theta -x |^2 - \epsilon + \theta \ge 0.\) Furthermore, \(\theta < T\wedge \theta ^{D,+}\) and \(|X_t-x|^2 + \varXi _t-\varsigma \le \epsilon \) for all \(t\le \theta .\) Notice that on \([0,\theta ]\), \(d\varXi _t= dt\) then, by Itô’s formula, we get

$$\begin{aligned} \psi _1(\varsigma ,x)= & {} \mathbb {E}_{\varsigma ,x,1} \Big [{\mathrm{e}}^{-\rho \theta } \psi _1(\varXi _\theta , X_\theta ) + \int _0^\theta {\mathrm{e}}^{-\rho t}(\rho \psi _1(\varXi _t,X_t) -{\mathcal {L}} \psi _1(\varXi _t,X_t)\\&-\, \,\frac{\partial \psi _1}{\partial \varsigma }(\varXi _t,X_t) ){\mathrm{d}}t \\&-\, \int _0^\theta {\mathrm{e}}^{-\rho t} (1-\kappa _1) \frac{\partial \psi _1}{\partial x}(\varXi _t,X_t) {\mathrm{d}}K^c_t \\&-\, \sum _{0 \le t\le \theta } {\mathrm{e}}^{-\rho t} \left( \psi _1(\varXi _t,X_{t-} + (1-\kappa _1) \varDelta K_t) - \psi _1(\varXi _t,X_{t-}) \right) \Big ]. \end{aligned}$$

It follows from (47) that

$$\begin{aligned} (1-\kappa _1) \frac{\partial \psi _1}{\partial x}(\varXi _t,X_t)< & {} 1-\eta \quad \text { and }\quad \psi _1(\varXi _t,X_{t-} + (1-\kappa _1) \varDelta K_t) - \psi _1(\varXi _t,X_{t-}) \\< & {} (1 - \eta ) \varDelta K_t. \end{aligned}$$

Consequently, we get

$$\begin{aligned} \psi _1(\varsigma ,x)\ge & {} \mathbb {E}_{\varsigma ,x,1} \Big [ - \int _0^\theta {\mathrm{e}}^{-\rho t} {\mathrm{d}}K_t + {\mathrm{e}}^{-\rho \theta } \psi _1(\varXi _\theta , X_\theta ) \Big ] \\&+\, \mathbb {E}_{\varsigma ,x,1} \Big [ \int _0^\theta {\mathrm{e}}^{-\rho t}(\rho \psi _1(\varXi _t,X_t) -{\mathcal {L}} \psi _1(\varXi _t,X_t)\\&-\, \frac{\partial \psi _1}{\partial \varsigma }(\varXi _t,X_t) ){\mathrm{d}}t + \eta \int _0^\theta {\mathrm{e}}^{-\rho t} {\mathrm{d}}K_t \Big ]. \end{aligned}$$

Combining the previous inequality with the fact that \(\psi _1 \ge v_1\) and (47), we get

$$\begin{aligned} v_1(\varsigma ,x)\ge & {} \mathbb {E}_{\varsigma ,x,1} \left[ -\int _0^\theta {\mathrm{e}}^{-\rho t} {\mathrm{d}}K_t + {\mathrm{e}}^{-\rho \theta } v_1(\varXi _\theta , X_\theta ) + \eta \int _0^\theta {\mathrm{e}}^{-\rho t}\left( {\mathrm{d}} t + {\mathrm{d}} K_t \right) \right] . \nonumber \\ \end{aligned}$$
(48)

Let \(\varphi (s,z) = C ((z-x)^2-\epsilon + (s-\varsigma )),\) for some positive constant \( C < \min ( \frac{1}{2 \sqrt{\epsilon }}, \frac{1}{\rho \epsilon + 2 {\bar{\mu }} \sqrt{\epsilon } + {\bar{\sigma }}^2 + 1})\) in which \({\bar{\mu }} = \sup _{x\in [0,D]} \mu (x), {\bar{\sigma }} = \sup _{x\in [0,D]} \sigma (x).\)

By Itô’s formula,

$$\begin{aligned} C \epsilon\le & {} \mathbb {E}_{\varsigma ,x,1} \left[ {\mathrm{e}}^{-\rho \theta } \varphi (\varXi _\theta , X_{\theta }) - \varphi (\varsigma , x) \right] \\\le & {} \mathbb {E}_{\varsigma ,x,1} \left[ \int _0^{\theta } {\mathrm{e}}^{-\rho t} (-\rho \varphi (\varXi _t,X_t) + 2 \mu (X_t) C (X_{t^-}-x) + C \sigma ^2(X_t) + C ) {\mathrm{d}}t \right] \\&+ \,\mathbb {E}_{\varsigma ,x,1} \left[ - \int _0^{\theta } {\mathrm{e}}^{-\rho t} 2 C (X_{t^-}-x)(1-\kappa _1) {\mathrm{d}}K_t \right] \\\le & {} \mathbb {E}_{\varsigma ,x,1} \left[ \int _0^{\theta } {\mathrm{e}}^{-\rho t} {\mathrm{d}} t + \int _0^{\theta } {\mathrm{e}}^{-\rho t} {\mathrm{d}}K_t \right] . \end{aligned}$$

Taking a supremum over \((Z,K) \in {\mathcal {A}}\) in (48) and applying the dynamic programming principle (11), we find the following contradiction: \(v_1(t,x) \ge v_1(t,x) + \eta C \epsilon .\)

Case (2) Assume that inequality coming from (17) is not verified for some \((\varsigma ,0) \in [0,\delta ]\times \{0\}\): There exists \(\eta \) and \(t >0\) such that for all \(\epsilon >0\), \(0\le x \le \epsilon \), and \(\varsigma \le s \le \varsigma +t \)

$$\begin{aligned} v_1(s,x) > \eta ,\quad \frac{\partial \psi _1}{\partial x} (s ,x)< \frac{1}{1-\kappa _1} - \eta \text{ and } \psi _1(s,0) < \psi _1(\varsigma ,0) + C (s-\varsigma ) ,\nonumber \\ \end{aligned}$$
(49)

due to the continuity of \(v_1\) and \(\frac{\partial \psi _1}{\partial x}.\) Here, \(C = \sup _{\varsigma \le s \le \varsigma +t} \frac{\partial \psi _1(s,0)}{\partial s}.\) Assume further that \(\epsilon < \min (D, v_1(\varsigma ,0)/\eta )\) and \(t < \delta - \varsigma \).

We consider \(\theta :=\inf \{s\ge 0: X_s\ge \varepsilon \}\) and deduce from (49) and the dynamic programming principle (11) that

$$\begin{aligned} v_1(\varsigma ,0)= & {} \sup _{(Z,K) \in {\mathcal {A}}, Z\equiv 0} \mathbb {E}_{\varsigma ,0,1} \Big [- J_1 +{\mathrm{e}}^{- \rho \theta } v_1(\varXi _\theta ,\epsilon ) \mathbb {1}_{\{\theta< T \wedge t\}} + {\mathrm{e}}^{- \rho t} v_1(\varXi _t,X_t) 1_{\{t \le \theta \wedge T\}} \Big ] \\\le & {} \sup _{K \in {\mathcal {A}}^0} \mathbb {E}_{\varsigma ,0,1} \Big [- J_1 + {\mathrm{e}}^{- \rho \theta } \psi _1(\varXi _\theta ,\epsilon ) \mathbb {1}_{\{\theta < T\wedge t \}} + A_0 1_{\{t \le \theta \wedge T\}} \Big ] \end{aligned}$$

where \(A_0 = \sup _{0\le x \le \epsilon } v_1(\varXi _t,x)\), a finite quantity, and \(J_1\) stands for \(\int _0^{\theta \wedge T \wedge t} {\mathrm{e}}^{- \rho s} {\mathrm{d}} K_s\). We can therefore bound the value \(v_1(\varsigma ,0)\) above by

$$\begin{aligned}&\sup _{K \in {\mathcal {A}}^0} \mathbb {E}_{\varsigma ,0,1} \Big [- J_1 + {\mathrm{e}}^{- \rho \theta }( \psi _1(\varXi _\theta ,0) + \left( \frac{1}{1-\kappa _1} - \eta \right) \epsilon ) \mathbb {1}_{\{\theta< T \wedge t\}} + A_0 1_{\{t \le \theta \wedge T\}} \Big ] \\&\quad \le \psi _1(\varsigma ,0) - \eta \epsilon + \sup _{K \in {\mathcal {A}}^0} \mathbb {E}_{\varsigma ,0,1} \Big [- J_1 + {\mathrm{e}}^{- \rho \theta }( C \theta + \frac{1}{1-\kappa _1} \epsilon ) \mathbb {1}_{\{\theta< T \wedge t\}} + A_0 1_{\{t \le \theta \wedge T\}} \Big ]\\&\quad \le v_1(\varsigma ,0) - \eta \epsilon + \sup _{K \in {\mathcal {A}}^0} \mathbb {E}_{\varsigma ,0,1} \Big [- J_1 + C \theta + {\mathrm{e}}^{- \rho \theta } \frac{1}{1-\kappa _1} X_{\theta } \mathbb {1}_{\{\theta < T \wedge t\}} + A_0 1_{\{t \le \theta \wedge T\}} \Big ] \\&\quad \le v_1(\varsigma ,0) - \eta \epsilon + \sup _{K \in {\mathcal {A}}^0} \mathbb {E}_{\varsigma ,0,1} \Big [C \theta + \int _0^{\theta \wedge T \wedge t} {\mathrm{e}}^{- \rho s} \left( \frac{\mu (X_s) - \rho X_s}{1-\kappa _1}\right) {\mathrm{d}} s + A_0 1_{\{t \le \theta \wedge T\}} \Big ]\\&\quad \le v_1(\varsigma ,0) - \eta \epsilon + (C+C') \sup _{K \in {\mathcal {A}}^0} \mathbb {E}_{\varsigma ,0,1} [\theta ]+ A_0 \mathbb {P}(t \le \theta ) \\&\quad \le v_1(\varsigma ,0) - \eta \epsilon + \frac{\epsilon ^2 (C+C'+ A_0/t)}{\underline{\sigma }^2}, \end{aligned}$$

where \(C' = \sup _{x< D} \left( \frac{\mu (x) - \rho x}{1-\kappa _1}\right) < \infty \) and Burkholder–Davis–Gundy inequality has been applied. Finally, if we simplify by \(v_1(\varsigma ,0)\) and divide by \(\varepsilon \), we get \(\eta \le \frac{\epsilon (C+C'+ A_0/t)}{\underline{\sigma }^2}\). We find a contradiction by sending \(\epsilon \) to 0.

The inequality coming from (15) is proved with a line of reasoning similar to Case (1) and (18) by a proof similar to Case (2). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevalier, E., Ly Vath, V. & Roch, A. Optimal Dividend and Capital Structure with Debt Covenants. J Optim Theory Appl 187, 535–565 (2020). https://doi.org/10.1007/s10957-020-01760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01760-4

Keywords

Mathematics Subject Classification

Navigation