Skip to main content
Log in

Analysis and Optimization of the Chemostat Model with a Lateral Diffusive Compartment

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the chemostat model with a side compartment connected by pure diffusion, and analyze its asymptotic properties. We investigate conditions under which this spatial structure is beneficial for species survival and conversion yield, compared to single chemostat. Under these conditions, we study the optimization problem for the best structure (volume distribution and diffusion rate), which minimizes the volume required to attain a desired conversion yield. The analysis reveals that particular configurations with a single tank connected by diffusion to the input stream can be the most efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Monod, J.: La technique de la culture continue: théorie et applications. Ann. Inst. Pasteur 79, 390–410 (1950)

    Google Scholar 

  2. Novick, A., Szilard, L.: Description of the chemostat. Science 112, 715–716 (1950)

    Google Scholar 

  3. Hoskisson, P.A., Hobbs, G.: Continuous culture—making a comeback? Microbiology 151, 3153–3159 (2005)

    Google Scholar 

  4. Harmand, J., Rapaport, A., Dochain, D., Lobry, C.: Microbial ecology and bioprocess control: opportunities and challenges. J. Process Control 18(9), 865–875 (2008)

    Google Scholar 

  5. Wade, M., Harmand, J., Benyahia, B., Bouchez, T., Chaillou, S., Cloez, B., Godon, J.J., Lobry, C., Moussa Boubjemaa, B., Rapaport, A., Sari, T., Arditi, R.: Perspectives in mathematical modelling for microbial ecology. Ecol. Modell. 321, 64–74 (2016)

    Google Scholar 

  6. Hsu, S.B., Hubbell, S., Waltman, P.: A mathematical theory for single-nutrient competition in continuous cultures of microorganisms. SIAM J. Appl. Math. 32, 366–383 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Smith, H., Waltman, P.: The Theory of Chemostat, Dynamics of Microbial Competition. Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  8. Harmand, J., Lobry, C., Rapaport, A., Sari, T.: The Chemostat: Mathematical Theory of Micro-organisms Cultures. Chemical Engineering Series. Wiley, Hoboken (2017)

    MATH  Google Scholar 

  9. Fekih-Salem, R., Harmand, J., Lobry, C., Rapaport, A., Sari, T.: Extensions of the chemostat model with flocculation. J. Math. Anal. Appl. 397, 292–306 (2013)

    MathSciNet  MATH  Google Scholar 

  10. de Leenheer, P., Angeli, D., Sontag, E.: Crowding effects promote coexistence in the chemostat. J. Math. Anal. Appl. 319, 48–60 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Ricica, J.: Continuous cultivation of microorganisms. A review. Folia Microbiol. 16(5), 389–415 (1971)

    Google Scholar 

  12. Stanbury, P., Whitaker, A., Hall, S.: Principles of Fermentation Technology, 3\(^{rd}\) edition. Butterworth-Heinemann, Oxford (2016)

    Google Scholar 

  13. Grady, L., Daigger, G., Lim, H.: Biological Wastewater Treatment. Environmental Science and Pollution Control Series, 3rd edn. Marcel Dekker, New York (1999)

    Google Scholar 

  14. Hutchinson, G.E.: A Treatise on Limnology. Vol. II: Introduction to Lake Biology and the Limnoplankton. Wiley, Hoboken (1967)

    Google Scholar 

  15. Barlow, J., Schaffner, W., de Noyelles Jr., F., Peterson, B.: Continuous flow nutrient bioassays with natural phytoplankton populations. In: Glass, G. (ed.) Bioassay Techniques and Environmental Chemistry. Wiley, Hoboken (1973)

    Google Scholar 

  16. Jannasch, H.W.: Steady state and the chemostat in ecology. Limnol. Oceanogr. 19(4), 716–720 (1974)

    Google Scholar 

  17. Kalff, J., Knoechel, R.: Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Annu. Rev. Ecol. Syst. 9, 475–495 (1978)

    Google Scholar 

  18. Rurangwa, E., Verdegem, M.C.J.: Microorganisms in recirculating aquaculture systems and their management. Rev. Aquacult. 7(2), 117–130 (2015)

    Google Scholar 

  19. Creed, I., McKnight, D., Pellerin, B., Green, M., Bergamaschi, B., Aiken, G., Burns, D., Findlay, S., Shanley, J., Striegl, R., Aulenbach, B., Clow, D., Laudon, H., McGlynn, B., McGuire, K., Smith, R., Stackpoole, S.: The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Can. J. Fish. Aquat. Sci. 72, 1272–1285 (2015)

    Google Scholar 

  20. Kung, C.M., Baltzis, B.: The growth of pure and simple microbial competitors in a moving and distributed medium. Math. Biosci. 111, 295–313 (1992)

    MATH  Google Scholar 

  21. Dramé, A.: A semilinear parabolic boundary-value problem in bioreactors theory. Electron. J. Differ. Eq. 129, 1–13 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Nie, H., Wu, J.: Positive solutions of a competition model for two resources in the unstirred chemostat. J. Math. Anal. Appl. 355, 231–242 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Smith, H., Tang, B., Waltman, P.: Competition in a n-vessel gradostat. SIAM J. Appl. Math. 91(5), 1451–1471 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Stephanopoulos, G., Fredrickson, A.: Effect of inhomogeneities on the coexistence of competing microbial populations. Biotechnol. Bioeng. 21, 1491–1498 (1979)

    Google Scholar 

  25. Haidar, I., Rapaport, A., Gérard, F.: Effects of spatial structure and diffusion on the performances of the chemostat. Math. Biosci. Eng. 8(4), 953–971 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Grieves, R.B., Pipes, W.O., Milbury, W.F., Wood, R.K.: Piston-flow reactor model for continuous industrial fermentations. J. Appl. Chem. 14, 478–486 (1964)

    Google Scholar 

  27. Doran, P.: Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol. Prog. 15, 319–335 (1999)

    Google Scholar 

  28. Dramé, A., Lobry, C., Harmand, J., Rapaport, A., Mazenc, F.: Multiple stable equilibrium profiles in tubular bioreactors. Math. Comput. Model. 48(11–12), 1840–1853 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Zambrano, J., Carlsson, B., Diehl, S.: Optimal steady-state design of zone volumes of bioreactors with Monod growth kinetics. Biochem. Eng. J. 100, 59–66 (2015)

    Google Scholar 

  30. Diehl, S., Zambrano, J., Carlsson, B.: Steady-state analyses of activated sludge processes with plug-flow reactor. J. Environ. Chem. Eng. 5(1), 795–809 (2017)

    Google Scholar 

  31. Lovitt, R., Wimpenny, J.: The gradostat: a tool for investigating microbial growth and interactions in solute gradients. J. Gen. Microbiol. 6, 80 (1979)

    Google Scholar 

  32. Lovitt, R., Wimpenny, J.: The gradostat: a bidirectional compound chemostat and its applications in microbial research. J. Gen. Microbiol. 127, 261–268 (1981)

    Google Scholar 

  33. Tang, B.: Mathematical investigations of growth of microorganisms in the gradostat. J. Math. Biol. 23, 319–339 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Smith, H., Waltman, P.: The gradostat: a model of competition along a nutrient gradient. Microb. Ecol. 22, 207–226 (1991)

    Google Scholar 

  35. Jacquez, J.: Compartmental Analysis in Biology and Medicine, 3rd edn. BioMedware, Ann Arbor, MI (1996)

    MATH  Google Scholar 

  36. Levenspiel, O.: Chemical reaction engineering, 3rd edn. Wiley, New York (1999)

    Google Scholar 

  37. Fogler, S.: Elements of Chemical Reaction Engineering, 4th edn. Prentice Hall, New York (2008)

    Google Scholar 

  38. Hu, W., Wlashchin, K., Betenbaugh, M., Wurm, F., Seth, G., Zhou, W.: Cellular Bioprocess Technology, Fundamentals and Frontier. Lectures Notes. University of Minnesota, Minneapolis, MN (2007)

    Google Scholar 

  39. Grobicki, A., Stuckey, D.: Hydrodynamic characteristics of the anaerobic baffled reactor. Water Res. 26, 371–378 (1992)

    Google Scholar 

  40. Roux, G., Dahhou, B., Queinnec, I.: Adaptive non-linear control of a continuous stirred tank bioreactor. J. Process Control 4(3), 121–126 (1994)

    Google Scholar 

  41. Roca, E., Ghommidh, C., Navarro, J.M., Lema, J.M.: Hydraulic model of a gas-lift bioreactor with flocculating yeast. Bioprocess Biosyst. Eng. 12(5), 269–272 (1995)

    Google Scholar 

  42. Valdes-Parada, F., Alvarez-Ramirez, J., Ochoa-Tapia, A.: An approximate solution for a transient two-phase stirred tank bioreactor with nonlinear kinetics. Biotechnol. Prog. 21(5), 1420–1428 (2005)

    Google Scholar 

  43. Saddoud, A., Sari, T., Rapaport, A., Lortie, R., Harmand, J., Dubreucq, E.: A mathematical study of an enzymatic hydrolysis of a cellulosic substrate in non homogeneous reactors. In: Proceedings on IFAC (CAB) (2010)

  44. Nakaoka, S., Takeuchi, Y.: Competition in chemostat-type equations with two habitats. Math. Biosci. 201, 157–171 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Tsakiroglou, C., Ioannidis, M.: Dual-porosity modelling of the pore structure and transport properties of a contaminated soil. Eur. J. Soil Sci. 59(4), 744–761 (2008)

    Google Scholar 

  46. Schwartz, R., Juo, A., McInnes, K.: Estimating parameters for a dual-porosity model to describe non-equilibrium, reactive transport in a fine-textured soil. J. Hydrol. 229(3–4), 149–167 (2000)

    Google Scholar 

  47. Lenas, P., Thomopoulos, N., Vayenas, D., Pavlou, S.: Oscillations of two competing microbial populations in configurations of two interconnected chemostats. Math. Biosci. 148, 43–63 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Dong, X., Kojouharov, H., Grover, J.: Mathematical models of nutrient recycling and toxin production in a gradostat. Comput. Math. Appl. 68(9), 972–985 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Tan, C., Wang, Y., Wu, H.: Population abundance of a two-patch chemostat system with asymmetric diffusion. J. Theor. Biol. 474, 1–13 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Hayes, R.E., Mmbaga, J.P.: Introduction to Chemical Reactor Analysis, 2nd edn. CRC Press, Boca Raton, FL (2012)

    Google Scholar 

  51. Nauman, E.: Chemical Reactor Design, Optimization, and Scaleup. McGraw-Hill Handbooks Series. McGraw-Hill, New York (2002)

    Google Scholar 

  52. Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M.: Handbook of Industrial Mixing: Science and Practice. Wiley, Hoboken (2004)

    Google Scholar 

  53. de Gooijer, C., Bakker, W., Beeftink, H., Tramper, J.: Bioreactors in series: an overview of design procedures and practical applications. Enzyme Microb. Technol. 18, 202–219 (1996)

    Google Scholar 

  54. Harmand, J., Rapaport, A., Trofino, A.: Optimal design of two interconnected bioreactors-some new results. AIChE J. 49(6), 1433–1450 (1999)

    Google Scholar 

  55. Harmand, J., Dochain, D.: The optimal design of two interconnected (bio)chemical reactors revisited. Comput. Chem. Eng. 30, 70–82 (2005)

    Google Scholar 

  56. Smith, H.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. AMS Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  57. Luyben, K., Tramper, J.: Optimal design for continuously stirred tank reactors in series using Michaelis–Menten kinetics. Biotechnol. Bioeng. 24, 1217–1220 (1982)

    Google Scholar 

  58. Nelson, M., Sidhu, H.: Evaluating the performance of a cascade of two bioreactors. Chem. Eng. Sci. 61, 3159–3166 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors thank the French LabEx NUMEV (Project ANR-10-LABX-20), incorporated into the I-Site MUSE, for the postdoctoral grant of the First Author at MISTEA lab, Montpellier, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Crespo.

Additional information

Communicated by Lorenz Biegler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of the Primary Results of Sect. 2

Appendix: Proofs of the Primary Results of Sect. 2

Proof of Lemma 2.2

Define \(z_{i}=s_{\mathrm{in}}-s_{i}-x_{i}\) for each tank \(i=1,2\) and consider the dynamics (1) in \((\mathbf {z},\mathbf {s})\) coordinates:

$$\begin{aligned} \dot{z}_{1}= & {} \displaystyle -\frac{Q}{V_{1}}z_{1}-\frac{d}{V_{1}}(z_{1}-z_{2}),\nonumber \\ \dot{s}_{1}= & {} \displaystyle -\mu (s_{1})(s_{\mathrm{in}}-s_{1}-z_{1}) + \frac{Q}{V_{1}}(s_{\mathrm{in}}-s_{1}) +\frac{d}{V_{1}}(s_{2}-s_{1}),\nonumber \\ \dot{z}_{2}= & {} \displaystyle -\frac{Q}{V_{2}}(z_{2}-z_{1}),\nonumber \\ \dot{s}_{2}= & {} \displaystyle -\mu (s_{2})(s_{\mathrm{in}}-s_{2}-z_{2}) +\frac{d}{V_{2}}(s_{1}-s_{2}). \end{aligned}$$
(18)

This system has a cascade structure with a first independent sub-system linear in \(\mathbf {z}\)

$$\begin{aligned} {\dot{\mathbf {z}}} = \underbrace{\left[ \begin{array}{cc} \displaystyle -\frac{Q+d}{V_{1}} &{} \displaystyle \frac{d}{V_{1}}\\ \displaystyle \frac{d}{V_{2}} &{} \displaystyle -\frac{d}{V_{2}} \end{array}\right] }_{\displaystyle \mathbf {M}} \mathbf {z}, \end{aligned}$$
(19)

where one has

$$\begin{aligned} \text{ tr }(\mathbf {M})=-\frac{Q+d}{V_{1}}-\frac{d}{V_{2}}<0 \quad \text{ and } \quad \text{ det }(\mathbf {M})=\frac{Qd}{V_{1}V_{2}}>0. \end{aligned}$$

Therefore, the matrix \(\mathbf {M}\) is Hurwitz and any solution \(\mathbf {z}\) of (19) converges exponentially to \(\mathbf {0}\). Then, the solution \(\mathbf {s}\) can be written as the solution of the non-autonomous dynamics

$$\begin{aligned} {\dot{\mathbf {s}}}=\mathbf {F}(t,\mathbf {s})=\left[ \begin{array}{c} \displaystyle \left( \frac{Q}{V_{1}}-\mu (s_{1})\right) (s_{\mathrm{in}}-s_{1}) +\frac{d}{V_{1}}(s_{2}-s_{1})+\mu (s_{1})z_{1}(t)\\ \displaystyle -\mu (s_{2})(s_\mathrm{in}-s_{2})+\frac{d}{V_{2}}(s_{1}-s_{2})+\mu (s_{2})z_{2}(t) \end{array}\right] . \end{aligned}$$
(20)

Notice that for any \((t,\mathbf {s})\), one has

$$\begin{aligned} \frac{\partial F_{1}(t,\mathbf {s})}{\partial s_{2}}=\frac{d}{V_{1}}> 0 \quad \text{ and } \quad \frac{\partial F_{2}(t,\mathbf {s})}{\partial s_{1}}=\frac{d}{V_{2}} > 0, \end{aligned}$$

and so the dynamics (20) is cooperative (see, e.g., [56]).

Define \(\check{F}_{1}(t,\mathbf {s}):= -\frac{Q}{V_{1}}s_{1}-\mu (s_{1})(s_{\mathrm{in}}-s_{1}) +\frac{d}{V_{1}}(s_{2}-s_{1}) +\mu (s_{1})z_{1}(t)\), for which it follows that \(F_{1}(t,\mathbf {s})>\check{F}_{1}(t,\mathbf {s})\) for any \((t,\mathbf {s})\). Proposition 2.1 in [56] allows to state that any solution of (20) with \(s_{i}(0)\ge 0\) (\(i=1,2\)) satisfies \(s_{i}(t)\ge \check{s}_{i}(t)\) (\(i=1,2)\) for any \(t>0\), where \(\check{\mathbf {s}}\) is solution of the dynamics

$$\begin{aligned} {\dot{\check{\mathbf{s}}}}= {\check{\mathbf{F}}}(t,{\check{\mathbf{s}}})=\left[ \begin{array}{l} \check{F}_{1}(t,{\check{\mathbf{s}}})\\ F_{2}(t,{\check{\mathbf{s}}}) \end{array}\right] , \quad {\check{\mathbf{s}}}(0)=\mathbf {0} \end{aligned}$$

As one has \({\check{\mathbf{F}}}(t,\mathbf {0})=\mathbf {0}\) for any t, the solution \({\check{\mathbf{s}}}\) is identically null and one obtains that \(s_{i}(t)\) (\(i=1,2\)) stays nonnegative for any positive t.

Similarly, \(\mathbf {x}\) can be written as a solution of a non-autonomous cooperative dynamics

$$\begin{aligned} \dot{\mathbf {x}} = \mathbf {L}(t,\mathbf {x})=\left[ \begin{array}{c} \displaystyle \left( \mu (s_{1}(t))-\frac{Q+d}{V_{1}}\right) x_{1}+\frac{d}{V_{1}}x_{2}\\ \displaystyle \frac{d}{V_{2}}x_{1}+\left( \mu (s_{2}(t))-\frac{d}{V_{2}}\right) x_{2} \end{array}\right] \end{aligned}$$

with \(\mathbf {L}(t,\mathbf {0})=\mathbf {0}\), which allows to conclude that \(x_{i}(t)\) (\(i=1,2\)) stays nonnegative for any positive t.

Finally, the convergence of \(\mathbf {z}\) to \(\mathbf {0}\) provides the boundedness of the solutions \(\mathbf {s}(t)\), \(\mathbf {x}(t)\). \(\square \)

Proof of Proposition 2.1

From the two last equations of (1), one has \(s_{1}+x_{1}=s_{2}+x_{2}\) at steady state, and from the two first ones \(s_{1}+x_{1}=s_{\mathrm{in}}\). The values \(s_{1}\), \(s_{2}\) at steady state are then solutions of the system of two equations

$$\begin{aligned} 0= & {} \left( \frac{Q}{V_{1}}-\mu (s_{1})\right) (s_\mathrm{in}-s_{1}) +\frac{d}{V_{1}}(s_{2}-s_{1}) \end{aligned}$$
(21)
$$\begin{aligned} 0= & {} -\mu (s_{2})(s_\mathrm{in}-s_{2})+\frac{d}{V_{2}}(s_{1}-s_{2}) \end{aligned}$$
(22)

and \(x_{1}\), \(x_{2}\) at steady state are uniquely defined from each solution \((s_{1},s_{2})\) of (21)–(22). Clearly, \((s_{\mathrm{in}},s_{\mathrm{in}})\) is a solution of (21)–(22). We look for (positive) solutions different to \((s_{\mathrm{in}},s_\mathrm{in})\). Posit

$$\begin{aligned} \lambda _{1}(s_{\mathrm{in}}):=\max \left\{ s_{1} \in [0,s_{\mathrm{in}}] \text{: } \mu (s_{1})\le \frac{Q}{V_{1}} \right\} \end{aligned}$$

From Eqs. (21)–(22), a solution different to \((s_{\mathrm{in}},s_{\mathrm{in}})\) has to satisfy \(s_{1}>s_{2}>0\) and then from Eq. (21), one has also \(s_{1}<\lambda _{1}(s_\mathrm{in})\). Define then the functions:

$$\begin{aligned} \phi _{1}(s_{1}):= & {} s_{1}-\frac{Q-V_{1}\mu (s_{1})}{d}(s_\mathrm{in}-s_{1}) =s_{1}-\frac{Q}{d}(s_{\mathrm{in}}-s_{1})+\frac{V_{1}}{d}\beta (s_{1}),\\ \phi _{2}(s_{2}):= & {} s_{2}+\frac{V_{2}\mu (s_{2})}{d}(s_\mathrm{in}-s_{2}) =s_{2}+\frac{V_{2}}{d}\beta (s_{2}). \end{aligned}$$

so that any solution of (21)–(22) fulfills \(s_{2}=\phi _{1}(s_{1})\) and \(s_{1}=\phi _{2}(s_{2})\). One has

$$\begin{aligned} \phi _{1}'(s_{1})=1+\frac{V_{1}}{d}\mu '(s_{1})(s_\mathrm{in}-s_{1})+\frac{Q-V_{1}\mu (s_{1})}{d}. \end{aligned}$$

Therefore, \(\phi _{1}\) is increasing on \([0,\lambda _{1}(s_\mathrm{in})]\), with \(\phi _{1}(0)=-(Q/d)s_{\mathrm{in}}<0\) and \(\phi _{1}(\lambda _{1}(s_{\mathrm{in}}))=\lambda _{1}(s_{\mathrm{in}})>0\). Thus, \(\phi _{1}\) is invertible on \([-(Q/d)s_{\mathrm{in}},\lambda _{1}(s_\mathrm{in})]\) with

$$\begin{aligned} \phi _{1}^{-1}(0) \in ]0,\lambda _{1}(s_{\mathrm{in}})[. \end{aligned}$$

From Lemma 2.1, it follows that \(\phi _{1}\) and \(\phi _{2}\) are strictly concave functions on \([0,s_{\mathrm{in}}]\). Consider then the function

$$\begin{aligned} \gamma (s_{2})=\phi _{2}(s_{2})-\phi _{1}^{-1}(s_{2}) \quad s_{2} \in [0,s_{\mathrm{in}}], \end{aligned}$$

which is also strictly concave on \([0,s_{\mathrm{in}}]\). Then, a solution \((s_{1},s_{2})\) can be written as a solution of

$$\begin{aligned} \gamma (s_{2})=0 , \quad s_{1}=\phi _{2}(s_{2}) \quad \text{ with } s_{2} \in [0,\lambda _{1}(s_{\mathrm{in}})]. \end{aligned}$$

Notice that one has \(\gamma (s_{\mathrm{in}})=0\), and as \(\gamma \) is strictly concave, it cannot have more than two zeros. Therefore, there is at most one solution \((s_{1},s_{2})\) different to \((s_\mathrm{in},s_{\mathrm{in}})\). Furthermore, one has \(\gamma (0)=-\phi _{1}^{-1}(0)<0\). Now, distinguish two different cases:

  • When \(\lambda _{1}(s_{\mathrm{in}})<s_{\mathrm{in}}\) (or equivalently \(\mu (s_{\mathrm{in}})>Q/V_{1}\)), one has

    $$\begin{aligned} \gamma (\lambda _{1}(s_{\mathrm{in}}))=\frac{QV_{2}}{dV_{1}}(s_\mathrm{in}-\lambda _{1}(s_{\mathrm{in}}))>0. \end{aligned}$$

    By using the mean value theorem, one concludes that there exists \(s_{2} \in (0,\lambda _{1}(s_{\mathrm{in}}))\) such that \(\gamma (s_{2})=0\).

  • When \(\lambda _{1}(s_{\mathrm{in}})=s_{\mathrm{in}}\) (that is when \(\mu (s_\mathrm{in})\le Q/V_{1}\)), the function \(\gamma \) takes positive values on the interval \([0,s_{\mathrm{in}}]\) if and only if \(\gamma '(s_{\mathrm{in}})<0\) (\(\gamma \) being strictly concave on \([0,s_{\mathrm{in}}]\)), or equivalently when the condition

    $$\begin{aligned} \phi _{2}'(s_{\mathrm{in}})<\frac{1}{\phi _{1}'(s_{\mathrm{in}})} \end{aligned}$$

    is fulfilled. Notice that one has \(\phi _{1}'(s_{\mathrm{in}})>0\) because \(\lambda _{1}(s_{\mathrm{in}})=s_{\mathrm{in}}\). So the condition can be also written as \(\phi _{1}'(s_{\mathrm{in}})\phi _{2}'(s_{\mathrm{in}})<1\). From the expressions of \(\phi _{1}\) and \(\phi _{2}\), one can write this condition as

    $$\begin{aligned} \frac{(d+Q-V_{1}\mu (s_{\mathrm{in}}))(d-V_{2}\mu (s_{\mathrm{in}}))}{d^2}<1, \end{aligned}$$

    and check that this exactly amounts to require \(s_{\mathrm{in}}\) to satisfy \(P(\mu (s_{\mathrm{in}}))<0\).

We conclude that there exists a positive steady state if and only if \(\mu (s_{\mathrm{in}})>Q/V_{1}\) or \(P(\mu (s_{\mathrm{in}}))<0\) and that this steady state (when it exists) is unique.

Let us study now the stability of the steady states. Due to the cascade structure of the dynamics (1) that is made explicit in the proof of Lemma 2.2, the Jacobian matrix in the \((\mathbf {z},\mathbf {s})\) coordinates depends only on \(\mathbf {s}\) and is equal to

$$\begin{aligned} \mathbf {J}(\mathbf {s})= & {} \left[ \begin{array}{ll} \mathbf {M} &{} \mathbf {0}\\ \mathbf {N}(\mathbf {s}) &{} \mathbf {J}_{a}(\mathbf {s}) \end{array}\right] \quad \text{ with } \quad \mathbf {J}_{a}(\mathbf {s})=\left[ \begin{array}{ll} \displaystyle -\frac{d}{V_{1}}\phi _{1}'(s_{1}) &{} \displaystyle \frac{d}{V_{1}}\\ \displaystyle \frac{d}{V_{2}} &{} \displaystyle -\frac{d}{V_{2}}\phi _{2}'(s_{2}) \end{array}\right] ,\\ \mathbf {N}(\mathbf {s})= & {} \left[ \begin{array}{ll} \mu (s_{1}) &{} 0\\ 0 &{} \mu (s_{2}) \end{array}\right] \end{aligned}$$

where the matrix \(\mathbf {M}\) defined in (19) is Hurwitz. Accordingly to Proposition 2.1, the equilibrium \(\mathbf {E}^\star \ne \mathbf {E}^0\) exists when \(P(\mu (s_\mathrm{in}))>0\) or \(\mu (s_{\mathrm{in}})>Q/V_{1}\).

  • When \(P(\mu (s_{\mathrm{in}}))>0\), one has \(\phi _{1}'(s_\mathrm{in})\phi _{2}'(s_{\mathrm{in}})<1\) or equivalently \(\text{ det }(\mathbf {J}_{a}(\mathbf {s}^0))<0\). Then, \(\mathbf {E}^0\) is a saddle point (with a stable manifold of dimension one).

  • When \(\mu (s_{\mathrm{in}})>Q/V_{1}\), notice that the equilibrium \(\mathbf {E}^0\) is not necessarily hyperbolic (as one can have \(P(\mu (s_{\mathrm{in}}))=0\) which implies then \(\text{ det }(\mathbf {J}_{a}(\mathbf {s}^0))=0\)) and we cannot conclude its stability properties directly.

As already mentioned in Lemma 2.2, the dynamics is cooperative in the \((\mathbf {z},\mathbf {s})\) coordinates. Moreover, it is irreducible when \(\mu (s_{1})\) or \(\mu (s_{2})\) is non-null. But one has

$$\begin{aligned} s_{i}=0 \; \Rightarrow \; \dot{s}_{i} \ge \frac{Q}{V_{i}}s_\mathrm{in}>0 \quad (i=1,2) \end{aligned}$$

The domain \({{\mathcal {D}}}={\mathbb {R}}^2\times ({\mathbb {R}}_{+}\setminus \{0\})^2\) is thus invariant and one can consider without loss of generality initial conditions in \({{\mathcal {D}}}\). Then, the dynamics is strongly monotone on \({{\mathcal {D}}}\). As any forward orbit of (18) in \({{\mathcal {D}}}\) is bounded (see Lemma 2.2), we can use the property of strongly monotone systems (see for instance Theorem C.8 in [7]) to conclude that for any initial condition of (1) in \({\mathbb {R}}_{+}^4\), except on a set of null measure, the trajectory solution converges asymptotically to an equilibrium. Finally, when the equilibrium \(\mathbf {E}^\star \) exists, the analysis conducted in the proof of Proposition 2.1 allows us to deduce the inequalities \(\phi _{1}'(s_{1}^\star )>0\) and \(\gamma '(s_{2}^\star )>0\), which in turn imply \(\phi _{1}'(s_{1}^\star )\phi _{2}'(s_{2}^\star )>1\), and so \(\phi _{2}'(s_{2}^\star )>0\). Then, one has \(\text{ tr }(\mathbf {J}_{a}(\mathbf {s}^\star ))<0\) and \(\text{ det }(\mathbf {J}_{a}(\mathbf {s}^\star ))>0\) i.e., \(\mathbf {J}(\mathbf {s}^\star )\) is Hurwitz, which proves that the attractive equilibrium \(\mathbf {E}^\star \) is also locally exponentially stable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo, M., Rapaport, A. Analysis and Optimization of the Chemostat Model with a Lateral Diffusive Compartment. J Optim Theory Appl 185, 597–621 (2020). https://doi.org/10.1007/s10957-020-01665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01665-2

Keywords

Mathematics Subject Classification

Navigation