Skip to main content
Log in

Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng, S.G.: \(G\)-Expectation, \(G\)-Brownian motion and related stochastic calculus of Itô type. In: Stochastic Analysis and Applications, Abel Symposium, vol. 2, pp. 541–567. Springer, Berlin (2007)

  2. Epstein, L.G., Ji, S.L.: Ambiguous volatility and asset pricing in continuous time. Rev. Financ. Stud. 26, 1740–1786 (2013)

    Article  Google Scholar 

  3. Epstein, L.G., Ji, S.L.: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ. 50, 269–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hu, M.S., Ji, S.L., Peng, S.G., Song, Y.S.: Backward stochastic differential equations driven by \(G\)-Brownian motion. Stoch. Proc. Appl. 124, 759–784 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu, M.S., Ji, S.L., Peng, S.G., Song, Y.S.: Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by \(G\)-Brownian motion. Stoch. Proc. Appl. 124, 1170–1195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Soner, H.M., Touzi, N., Zhang, J.F.: Wellposedness of second order backward SDEs. Probab. Theory Relat. Fields 153, 149–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, M.S., Ji, S.L.: Dynamic programming principle for stochastic recursive optimal control problem driven by a \(G\)-Brownian motion. Stoch. Proc. Appl. 127, 107–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fouque, J.-P., Pun, C.S., Wong, H.Y.: Portfolio optimization with ambiguous correlation and stochastic volatilities. SIAM. J. Control. Optim. 54, 2309–2338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matoussi, A., Possamaï, D., Zhou, C.: Robust Utility maximization in non-dominated models with 2BSDEs. Math. Finance 25(2), 258–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Neufeld, A., Nutz, M.: Robust utility maximization with Lévy processes. Math. Finance 28(1), 82–105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. El Karoui, N., Pardoux, E., Quenez, M.C.: Reflected Backward SDEs and American Options. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 215–231 (1997)

  12. Li, H.W., Peng, S.G., Soumana Hima, A.: Reflected solutions of BSDE driven by \(G\)-Brownian motion. Sci. China Math. 61(1), 1–26 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Wu, Z., Yu, Z.Y.: Dynamic programming principle for one kind of stochastic recursive optimal control problem and Hamilton–Jacobi–Bellman equation. SIAM J Control Optim. 47(5), 2616–2641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peng, S.G.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1

  15. Denis, L., Hu, M.S., Peng, S.G.: Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownian motion paths. Potential Anal. 34, 139–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, S.: Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces. Electron. J. Probab. 17, 1–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, S.G.: A generalized dynamic programming principle and Hamilton–Jacobi–Bellmen equation. Stoch. Stoch. Rep. 38, 119–134 (1992)

    Article  MATH  Google Scholar 

  18. Peng, S.G.: Backward stochastic differential equation and application to optimal control. Appl. Math. Optim. 27, 125–144 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Buckdahn, R., Nie, T.Y.: Generalized Hamilton–Jacobi–Bellman equations with Dirichlet boundary and stochastic exit time optimal control problem. SIAM. J. Control. Optim. 54(2), 602–631 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng, S.G.: Backward stochastic differential equations-stochastic optimization theory and viscosity solutions of HJB equations. In: Yan, J., Peng, S., Fang, S., Wu, L. (eds.) Topics on Stochastic Analysis, pp. 85–138. Science Press, Beijing (1997). (in Chinese)

    Google Scholar 

  21. Hu, M.S., Wang, F.L.: Stochastic optimal control problem with infinite horizon driven by \(G\)-Brownian motion. ESAIM Control Optim. Calc. Var. 24(2), 873–899 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Buckdahn, R., Li, J.: Stochastic differential games with reflection and related obstacle problems for Isaacs equations. Acta Math. Appl. Sin. English Ser. 27(4), 647–678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Song, Y.S.: Some properties on \(G\)-evaluation and its applications to \(G\)-martingale decomposition. Sci. China Math. 54, 287–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Li’s research was supported by the German Research Foundation (DFG) via CRC 1283. Wang’s research was supported by the National Natural Science Foundation of China (Nos. 11601282, 11871310 and 11871458) and the Natural Science Foundation of Shandong Province (No. ZR2016AQ10). The authors wish to thank the editor and the referees for their valuable comments and constructive suggestions which improved the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falei Wang.

Additional information

Hélène Frankowska.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Reflected G-BSDE

The definition of reflected G-BSDEs Given an obstacle process \(\{S_t\}_{t\in [0,T]}\), a terminal value \(\zeta \in L^{\beta }_G(\varOmega _T)\) with \(\zeta \ge S_T\) for \(\beta >2\) and generator \(f(t,\omega ,y,z):[0,T]\times \varOmega \times \mathbb {R}\times \mathbb {R}^{d}\rightarrow \mathbb {R}\), a triple of processes \((Y,Z,A)\in \mathfrak {S}_G^{2}(0,T)\) is called a solution of reflected G-BSDE with data \((\zeta , f,S)\) if the following properties hold:

  1. (i)

    \(Y_t=\zeta +\int _t^T f(s,Y_s,Z_s)\hbox {d}s -\int _t^T Z_s \hbox {d}B_s+(A_T-A_t)\);

  2. (ii)

    \(Y_t\ge S_t\), and \(\{-\int _0^t (Y_s-S_s)\hbox {d}A_s\}_{t\in [0,T]}\) is a non-increasing G-martingale,

where \(\mathfrak {S}_{G}^{2}(0,T)\) is the collection of processes (YZA) such that \(Y\in S_G^{2}(0,T)\), \(Z\in M_G^{2}(0,T)\) and \(A\in S_G^{2}(0,T)\) is a continuous non-decreasing process starting from origin.

The well-posedness of reflected G-BSDEs Consider the following assumption:

  1. (H1)

    there exists a constant \(\beta >2\) such that for any yz, \(f(\cdot ,\cdot ,y,z)\in M_{G}^{\beta }(0,T)\);

  2. (H2)

    there exists a constant \(L_1>0\) such that \( |f(t,y,z)-f(t,y^{\prime },z^{\prime })|\le L_1(|y-y^{\prime }|+|z-z^{\prime }|); \)

  3. (H3)

    there exists a constant c such that \(\{S_t\}_{t\in [0,T]}\in S_G^\beta (0,T)\) and \(S_t\le c\) for each \(t\in [0,T]\);

  4. (H3’)

    \(\{S_t\}_{t\in [0,T]}\) has the following form:

    $$\begin{aligned} S_t=S_0+\int _0^t b_s\hbox {d}s+\sum _{i,j=1}^{d}\int _0^t \gamma ^{ij}_sd\langle B^i, B^j\rangle _s+\sum _{j=1}^{d}\int _0^t \kappa _s^j \hbox {d}B_s^j, \end{aligned}$$

    where the processes \(b_s,\gamma ^{ij}_s=\gamma ^{ji}_s\in M_G^\beta (0,T)\) and \(\kappa _s^j\in H_G^\beta (0,T)\), \(1\le i,j\le d\).

Lemma A.1

([12]) Assume that f satisfies (H1)-(H2) for some \(\beta >2\) and let (H3) or (H3’) hold. Then, the reflected G-BSDE has a unique solution \((Y,Z,K)\in \mathfrak {S}_{G}^{2}(0,T)\).

Lemma A.2

([12]) Let \(\zeta ^{\nu }\in L_{G}^{\beta }(\varOmega _{T})\), \(\nu =1,2\) and \(f^{\nu }\), \(S^{\nu }\) satisfy (H1)-(H3) for some \(\beta >2\). Assume that \((Y^{\nu },Z^{\nu },K^{\nu })\in \mathfrak {S}_{G}^{2}(0,T)\), \(\nu =1,2\) are the solutions of the reflected G-BSDE corresponding to data (\(\zeta ^{\nu }\), \(f^{\nu }\), \(S^{\nu }\)). Set \(\hat{Y}_{t}=Y_{t}^{1}-Y_{t}^{2}\), \(\hat{S}_{t}=S_{t}^{1}-S_{t}^{2}\) and \(\hat{\zeta }=\zeta ^1-\zeta ^2\). Then, there exists a constant \(\hat{C}\) depending on T, G, \(\beta \), c and \(L_1\) such that

$$\begin{aligned} |Y^{\nu }_t|^2&\le \hat{C}\mathbb {\hat{E}}_t\left[ 1+|\zeta ^{\nu }|^2+\int ^T_t |\lambda _s^{\nu ,0}|^2\mathrm{d}s\right] ,\\ |\hat{Y}_t|^2&\le \hat{C}\left\{ \hat{\mathbb {E}}_t\left[ |\hat{\zeta }|^2+\int _t^T|f^{1}(s,Y_{s}^{2},Z_{s} ^{2})-f^{2}(s,Y_{s}^{2},Z_{s}^{2})|^2\mathrm{d}s\right] \right. \\&\left. \quad +\hat{\mathbb {E}}_t\left[ \sup _{s\in [t,T]}|\hat{S}_s|^2\right] ^{1/2}\varPsi _{t,T}^{1/2}\right\} , \end{aligned}$$

where \(\varPsi _{t,T}=\sum _{\nu =1}^2\hat{\mathbb {E}}_t[\sup _{s\in [t,T]}\hat{\mathbb {E}}_s[1+|\zeta ^\nu |^2+\int _t^T |f^{\nu }(r,0,0)|^2\mathrm{d}r]]\).

Lemma A.3

([12]) Let \(\zeta ^{\nu }\in L_{G}^{\beta }(\varOmega _{T})\), \(\nu =1,2\) and \(f^{\nu }\), \(S^{\nu }\) satisfy (H1), (H2), (H3’) for some \(\beta >2\). Assume that \((Y^{\nu },Z^{\nu },K^{\nu })\in \mathfrak {S}_{G}^{2}(0,T)\), \(\nu =1,2\) are the solutions of the reflected G-BSDE with data (\(\zeta ^{\nu }\), \(f^{\nu }\), \(S^{\nu }\)). Set \(\bar{Y}_{t}=(Y^1_t-S_t^1)-(Y^2_t-S_t^2)\) and \(\hat{S}_{t}=S_{t}^{1}-S_{t}^{2}\). Then, there exists a constant \(\bar{C}\) depending on T, G, \(\beta \) and \(L_1\) such that

$$\begin{aligned}&|Y^{\nu }_t|^2\le \bar{C}\mathbb {\hat{E}}_t\left[ |\zeta ^{\nu }|^2+\sup \limits _{s\in [t,T]}|S^{\nu }_s|^2+\int ^T_t |\bar{\lambda }_s^{\nu ,0}|^2\mathrm{d}s\right] ,\\&|\bar{Y}_t|^2\le \bar{ C}\left\{ \hat{\mathbb {E}}_t\left[ |\zeta ^{1}-S_T^1-\zeta ^{2}+S_T^2|^2+\int _t^T(|\hat{\lambda }_s|^2+|\hat{\rho }_s|^2+|\hat{S}_{s}|^2) \mathrm{d}s\right] \right\} , \end{aligned}$$

where \(\hat{\lambda }_{s}=|f^{1}(s,Y_{s}^{2},Z_{s} ^{2})-f^{2}(s,Y_{s}^{2},Z_{s}^{2})|\), \(\bar{\lambda }_s^{\nu ,0}=|f^{\nu }(s,0,0)|+|b^{\nu }_s|+\sum \nolimits _{i,j=1}^{d}|\gamma _s^{\nu ,ij}|+\sum \nolimits _{j=1}^d|\kappa _s^{\nu ,j}|\) and \(\hat{\rho }_s=|b^1_s-b^2_s|+\sum \nolimits _{i,j=1}^{d}|\gamma _s^{1,ij}-\gamma _s^{2,ij}|+\sum \nolimits _{j=1}^d|\kappa _s^{1,j}-\kappa _s^{2,j}|\).

Appendix B: The Complement Proofs

The following maximal inequality for G-martingale has been firstly established by Song [24].

Lemma B.1

Assume \(\alpha \ge 1\) and \(\delta >0\). Set

$$\begin{aligned} C_{G}=2\inf \left\{ \frac{\gamma }{\gamma -1}\left( 1+14\sum _{i=1}^{\infty }i^{- \frac{\alpha +\delta }{\gamma }}\right) :1<\gamma <\alpha +\delta , \gamma \le 2\right\} . \end{aligned}$$

Then, we have

$$\begin{aligned} \mathbb {\hat{E}}_t\left[ \sup _{s\in [t,T]}\mathbb {\hat{E}}_{s}[|\xi |^{\alpha }]\right] \le C_{G}\{(\mathbb {\hat{E}}_t[|\xi |^{\alpha +\delta }])^{\alpha /(\alpha +\delta )}+\mathbb {\hat{E}}_t[|\xi |^{\alpha +\delta }]\}. \end{aligned}$$

Proof

The proof is immediate from the definition of conditional G-expectation and Theorem 3.4 in [24]. \(\square \)

Now, we are going to state the proof of Lemmas 3.2 and 3.3.

Proof

It is sufficient to prove the second inequalities in both cases, since the first ones can be proved similarly. For convenience, we omit superscripts t. We fist prove the second inequality in Lemma 3.2. Set \(\hat{X}_s=X_s^{\xi ,u}-X_s^{\xi ',u'}\), \(\hat{\varPhi }(X_T)=\varPhi (X^{\xi ,u}_T)-\varPhi (X^{\xi ^{\prime },u^{\prime }}_T)\) and \(\hat{\lambda }_s=f(s,X^{\xi ^{\prime },u^{\prime }}_s,Y^{\xi ^{\prime },u^{\prime }}_s,Z^{\xi ^{\prime },u^{\prime }}_s,u^{\prime }_s) -f(s,X^{\xi ,u}_s,Y^{\xi ^{\prime },u^{\prime }}_s,Z^{\xi ^{\prime },u^{\prime }}_s, u_s)\). Applying Lemma A.2 and Lemma B.1 yields that

$$\begin{aligned} |\hat{Y}_t|^2 \le C_2\left\{ \hat{\mathbb {E}}_t\left[ |\hat{X}_T|^2+\int ^T_t(|\hat{X}_s|^2+|\hat{u}_s|^2)\hbox {d}s\right] + \hat{\mathbb {E}}_t\left[ \sup _{s\in [t,T]}|\hat{X}_s|^2\right] ^{1/2}\varPsi _{t,T}\right\} , \end{aligned}$$

where \(C_2\) is a generic constant depending on TGcL and n (may vary from line to line), and \( \varPsi _{t,T}^2\le C_2(1+|\xi |^3+|\xi ^{\prime }|^3)\). From Lemma 2.1, we could get the desired result.

Then, we prove the second inequality in Lemma 3.3. Applying G-Itô’s formula (see Theorem 6.5 of Chap. III in [14]) to \(l(s,X_s^{\xi ,u}) \) yields that

$$\begin{aligned} l(s,X_s^{\xi ,u}) =l(t,\xi )+\int ^s_t b^{\xi ,u}_r\hbox {d}r+\int ^s_t \gamma ^{\xi ,u,ij}_rd\langle B^i, B^j\rangle _r+\int ^s_t \kappa ^{\xi ,u,j}_r\hbox {d}B^j_r, \end{aligned}$$

where \(b^{\xi ,u},\gamma ^{\xi ,u}\) and \(\kappa ^{\xi ,u}\) are given by

$$\begin{aligned} {b}^{\xi ,u}_s&=\partial _s l(s,X_s^{\xi ,u})+\langle \partial _x l(s,X_s^{\xi ,u}), b(s,X_s^{\xi ,u},u_s)\rangle ,\\ {\gamma }^{\xi ,u,{ij}}_s&=\langle \partial _x l(s,X_s^{\xi ,u}), h_{ij}(s,X_s^{\xi ,u},u_s)\rangle \\&\quad +\frac{1}{2}(\sigma ^{\top }(s,X_s^{\xi ,u},u_s)\partial _{xx}^2 l(s,X_s^{\xi ,u})\sigma (s,X_s^{\xi ,u},u_s))_{ij},\\ \kappa ^{\xi ,u,j}_s&=\langle \partial _x l(s,X_s^{\xi ,u}), \sigma ^{\top }_j(s,X_s^{t,\xi ,u},u_s)\rangle , \ \sigma ^{\top }_j \text { is the } j\text {-th row of } \sigma ^{\top }. \end{aligned}$$

Denote by \(C_3\) a generic constant depending on T, G, n and L, which may vary from line to line. Then, recalling Lemma A.3, we deduce that

$$\begin{aligned} |\bar{Y}_t|^2\le C_3\left\{ \hat{\mathbb {E}}_t\left[ |\bar{\xi }|^2+\int _t^T(|\hat{\lambda }_s|^2+|\hat{\rho }_s|^2+|\hat{S}_{s}|^2) \hbox {d}s\right] \right\} , \end{aligned}$$

where

$$\begin{aligned}&\bar{Y}_t=(Y_t^{\xi ,u}-l(t,\xi ))-(Y_t^{\xi ',u'}-l(t,\xi ')),\ \hat{S}_s=l(s,X_s^{\xi ,u})-l(s,X_s^{\xi ',u'}),\\&\bar{\xi }=\varPhi (X^{\xi ,u}_T)-l(T,X^{\xi ,u}_T)-\varPhi (X^{\xi ^{\prime },u^{\prime }}_T)+l(T,X^{\xi ^{\prime },u^{\prime }}_T), \\&\hat{\lambda }_{s}=|f(s,X^{\xi ^{\prime },u^{\prime }}_s,Y^{\xi ^{\prime },u^{\prime }}_s,Z^{\xi ^{\prime },u^{\prime }}_s,u^{\prime }_s) -f(s,X^{\xi ,u}_s,Y^{\xi ^{\prime },u^{\prime }}_s,Z^{\xi ^{\prime },u^{\prime }}_s,u_s)|,\\&\hat{\rho }_s=|{b}^{\xi ,u}_s-b^{\xi ^{\prime },u^{\prime }}_s|+\sum \limits _{i,j=1}^{d}|\gamma _s^{\xi ,u,ij}-\gamma _s^{\xi ^{\prime },u^{\prime },ij}| +\sum \limits _{j=1}^d|\kappa _s^{\xi ,u,j}-\kappa _s^{\xi ^{\prime },u^{\prime },j}|. \end{aligned}$$

Set \(\bar{\varPsi }_{t,T}=\sup \limits _{s\in [t,T]}(1+|X^{\xi ,u}_s|+|X^{\xi ^{\prime },u^{\prime }}_s| +|X^{\xi ,u}_s|^2+|X^{\xi ^{\prime },u^{\prime }}_s|^2)\) and \(\hat{X}_s=X_s^{\xi ,u}-X_s^{\xi ',u'}\). Then, recalling assumptions (A1), (A2\(^{\prime }\)) and Lemma B.1, we derive that

$$\begin{aligned} |\bar{Y}_t|^2&\le C_3\left\{ \hat{\mathbb {E}}_t\left[ |\hat{X}_T|^2+\int ^T_t(|\hat{X}_s|^2 + |\hat{u}_s|^2)\hbox {d}s\right] +\hat{\mathbb {E}}_t[\bar{\varPsi }_{t,T}^4]^{\frac{1}{2}} \hat{\mathbb {E}}_t\left[ \int ^T_t(|\hat{X}_s|^4\right. \right. \\&\left. \left. \quad + |\hat{u}_s|^4)\hbox {d}s\right] ^{\frac{1}{2}} \right\} . \end{aligned}$$

Consequently, in spirit of Lemma 2.1, we get

$$\begin{aligned} |\bar{Y}_t|^2\le C_3(1+|\xi |^4+|\xi ^{\prime }|^4)\left( |\xi -\xi ^{\prime }|^2+\hat{\mathbb {E}}_t\left[ \int _t^T|u_s-u^{\prime }_s|^4\hbox {d}s\right] ^{\frac{1}{2}}\right) , \end{aligned}$$

which, together with \( |Y^{\xi ,u}_t-Y^{\xi ^{\prime },u^{\prime }}_t|^2\le 2(|l(t,\xi )-l(t,\xi ^{\prime })|^2+|\bar{Y}_t|^2), \) implies the inequality (ii). The proof is complete. \(\square \)

Finally, we are ready to state the proof of Eq. (7).

Proof

For readers’ convenience, we shall give the sketch of the proof. For simplicity, we omit the superscripts (tx).

From the proof of Lemma 4.4 in [12], it suffices to prove that

$$\begin{aligned} \lim \limits _{N\rightarrow \infty }\sup \limits _{u\in \mathcal {U}^{t}[t,T]}\mathbb {\hat{E}}\left[ \sup \limits _{s\in [t,T]}|(Y_s^{N,u}-l(s, X^{u}_s))^-|^2\right] =0. \end{aligned}$$

For simplicity, set \(\varTheta ^{N,u}_r=(X_r^{u},Y_r^{N,u},Z_r^{N,u})\). Now, recalling Lemma 4.3 in [12], we derive that for each \((t,x)\in [0,T]\times \mathbb {R}^n\) and \(u\in \mathcal {U}^t[t,T]\),

$$\begin{aligned} (Y_s^{N,u}-l(s, X^{u}_s))^- \le \hat{\mathbb {E}}_s\left[ |\tilde{S}_s^{N,u}|+|\int _s^T e^{N(s-r)}f(r,\varTheta _r^{N,u},u_r)\hbox {d}r|\right] , \end{aligned}$$

where \(\tilde{S}_s^{N,u}=e^{N(s-T)}(\varPhi (X^{u}_T)-l(s, X^{u}_s))+\int _s^T Ne^{N(s-r)}(l(r, X^{u}_r)-l(s, X^{u}_s))\hbox {d}r\).

In spirit of Lemma B.1 and using a similar analysis as Equation (4.3) in [12], we conclude that

$$\begin{aligned} \lim \limits _{N\rightarrow \infty }\sup \limits _{u\in \mathcal {U}^{t}[t,T]}\mathbb {\hat{E}}\left[ \sup \limits _{s\in [t,T]}\hat{\mathbb {E}}_s\left[ |\int _s^T e^{N(s-r)}f(r,\varTheta _r^{N,u},u_r)\hbox {d}r|\right] ^2\right] =0. \end{aligned}$$
(8)

Next, we shall deal with the term \(\tilde{S}_s^{N,u}\). Let \(C_{5}>0\) be a generic constant. It follows from Equation (4.4) in [12] that for each fixed \(\varepsilon ,\delta >0\) and \(\beta >2\),

$$\begin{aligned}&\lim \limits _{N\rightarrow \infty }\sup \limits _{u\in \mathcal {U}^{t}[t,T]}\hat{\mathbb {E}}\left[ \sup _{s\in [t,T-\delta ]}|\tilde{S}_s^{N,u}|^\beta \right] \\ \le&C_5\sup \limits _{u\in \mathcal {U}^{t}[t,T]}\left\{ \hat{\mathbb {E}}\left[ \sup _{s\in [t,T]}\sup _{r\in [s,s+\varepsilon ]}|l(r, X^{u}_s)-l(s, X^{u}_s)|^{\beta }\right] \right. \\&\left. +\hat{\mathbb {E}}\left[ \sup _{s\in [t,T]}\sup _{r\in [s,s+\varepsilon ]}| X^{u}_r- X^{u}_s|^{\beta }\right] \right\} . \end{aligned}$$

Noting that for each \(u\in \mathcal {U}^{t}[t,T]\) and any integer \(\rho >0\), we have

$$\begin{aligned}&\hat{\mathbb {E}}\left[ \sup _{s\in [t,T]}\sup _{r\in [s,s+\varepsilon ]}|l(r, X^{u}_s)-l(s, X^{u}_s)|^{\beta }\right] \\ \le&\,\hat{\mathbb {E}}\left[ \sup _{s\in [t,T]}\sup _{r\in [s,s+\varepsilon ]}|l(r, X^{u}_s)-l(s, X^{u}_s)|^{\beta }I_A\right] +\frac{C_5}{\rho }\hat{\mathbb {E}}\left[ \sup _{s\in [t,T]}|X^{u}_s|+\sup _{s\in [t,T]}|X^{u}_s|^{1+\beta }\right] \\ \le&\sup _{s\in [t,T], |x|\le \rho }\sup _{r\in [s,s+\varepsilon ]}|l(r,x)-l(s,x)|^\beta +\frac{C_5}{\rho }. \end{aligned}$$

where \(A={\{\sup \limits _{s\in [t,T]}|X^{u}_s|\le \rho \}}\). Denote \(t^{\rho }_i=\frac{i}{\rho }(T-t)\), \(i=0, \ldots , \rho \). Then, we deduce that, for each \(\varepsilon \le \frac{T-t}{\rho }\),

$$\begin{aligned} \hat{\mathbb {E}}\left[ \sup _{s\in [t,T]}\sup _{r\in [s,s+\varepsilon ]}| X^{u}_r- X^{u}_s|^{\beta }\right]&\le C_5\sum \limits _{i=0}^{\rho -1}\hat{\mathbb {E}}\left[ \sup _{s\in [t^{\rho }_i,t^{\rho }_{i+1}]}| X^{u}_{t^{\rho }_i}- X^{u}_s|^{\beta }\right] \le {C_5}{\rho ^{1-\frac{\beta }{2}}}. \end{aligned}$$

Consequently, letting \(\varepsilon \rightarrow 0\) and sending \(\rho \rightarrow \infty \) we obtain that

$$\begin{aligned}&\lim \limits _{N\rightarrow \infty }\sup \limits _{u\in \mathcal {U}^{t}[t,T]}\hat{\mathbb {E}}\left[ \sup _{t\in [0,T-\delta ]}|\tilde{S}_s^{N,u}|^\beta \right] =0, \end{aligned}$$

which, together with Eq. (8) and (4.5) in [12], implies that for each \(t<\delta <T\)

$$\begin{aligned}&\lim \limits _{N\rightarrow \infty }\sup \limits _{u\in \mathcal {U}^{t}[t,T]}\mathbb {\hat{E}}\left[ \sup \limits _{s\in [t,T]}|(Y_s^{N,u}-l(s, X^{u}_s))^-|^2\right] \\&\le \sup \limits _{u\in \mathcal {U}^{t}[t,T]}\mathbb {\hat{E}}\left[ \sup \limits _{s\in [T-\delta ,T]}|(Y_s^{1,u}-l(s, X^{u}_s))^-|^2\right] . \end{aligned}$$

By the definition of \(Y^{1,u}\), we have

$$\begin{aligned} Y_s^{1,u}=\mathbb {\hat{E}}_s\left[ \varPhi (X_T^{u})+\int _s^T f(r,\varTheta _r^{1,u},u_r)\hbox {d}r+\int _s^T (Y_r^{1,u}-l(r,X_r^{u}))^-\hbox {d}r\right] . \end{aligned}$$

It is easy to check that for some \(\beta >2\),

$$\begin{aligned} \lim _{\delta \rightarrow 0}\sup _{u\in \mathcal {U}^{t}[t,T]}\mathbb {\hat{E}}\left[ \sup \limits _{s\in [T-\delta ,T]}\int _s^T\{ |f(r,\varTheta _r^{1,u},u_r)|^\beta +|Y_r^{1,u}-l(r,X_r^{u})|^\beta \}\hbox {d}r\right] =0. \end{aligned}$$

By Lemma B.1, it follows that

$$\begin{aligned} \lim _{\delta \rightarrow 0}\sup _{u\in \mathcal {U}^{t}[t,T]}\mathbb {\hat{E}}\left[ \sup \limits _{s\in [T-\delta ,T]}\mathbb {\hat{E}}_s\left[ \int _s^T |f(r,\varTheta _r^{1,u},u_r)|+|Y_r^{1,u}-l(r,X_r^{u})|\hbox {d}r\right] ^2\right] =0. \end{aligned}$$

Note that \((Y_T^{1,u}-l(T, X^{u}_T))^- =0\). Then, it holds that

$$\begin{aligned} (Y_s^{1,u}-l(s, X^{u}_s))^-\le |Y_s^{1,u}-\varPhi (X_T^{u})|+|l(s, X^{u}_s)-l(T, X^{u}_T)|. \end{aligned}$$

Thus, by a similar analysis as the above we derive that for each integer \(\rho >0\),

$$\begin{aligned} \mathbb {\hat{E}}[\sup \limits _{s\in [T-\delta ,T]}|(Y_s^{1,u}-l(s, X^{u}_s))^-|^2]&\le C_5\left\{ \mathbb {\hat{E}}\left[ \sup \limits _{s\in [T-\delta ,T]}|\mathbb {\hat{E}}_s[\varPhi (X_T^{u})]-\varPhi (X_T^{u})|^2\right] \right. \\&\quad +\sup _{s\in [T-\delta ,T], |x|\le \rho }|l(s,x)-l(T,x)|^2\\&\quad \left. +\frac{C_5}{\rho }+m(\delta )\right\} , \end{aligned}$$

where \(m(\cdot )\) is a nonnegative continuous function satisfying \(\lim _{\delta \rightarrow 0}m(\delta )=0\).

On the other hand, it follows from Lemmas 2.1 and B.1 that

$$\begin{aligned} \lim _{\delta \rightarrow 0}\sup _{u\in \mathcal {U}^{t}[t,T]}\mathbb {\hat{E}} \left[ \sup \limits _{s\in [T-\delta ,T]}|\mathbb {\hat{E}}_s[\varPhi (X_T^{u})]-\varPhi (X_T^{u})|^2\right] =0. \end{aligned}$$

Therefore, by the above analysis, it holds that for each integer \(\rho >0\)

$$\begin{aligned}&\lim \limits _{N\rightarrow \infty }\sup \limits _{u\in \mathcal {U}^{t}[t,T]}\mathbb {\hat{E}}\left[ \sup \limits _{s\in [t,T]}|(Y_s^{N,u}-l(s, X^{u}_s))^-|^2\right] \\&\ \ \le C_5\left( \sup _{s\in [T-\delta ,T], |x|\le \rho }|l(s,x)-l(T,x)|^2+\frac{1}{\rho }+m(\delta )\right) . \end{aligned}$$

Sending \(\delta \rightarrow 0\) and then \(\rho \rightarrow \infty \) yields the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, F. Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework. J Optim Theory Appl 183, 422–439 (2019). https://doi.org/10.1007/s10957-019-01546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01546-3

Keywords

Mathematics Subject Classification

Navigation