Skip to main content
Log in

Splitting Methods for a Class of Horizontal Linear Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose two splitting methods for solving horizontal linear complementarity problems characterized by matrices with positive diagonal elements. The proposed procedures are based on the Jacobi and on the Gauss–Seidel iterations and differ from existing techniques in that they act directly and simultaneously on both matrices of the problem. We prove the convergence of the methods under some assumptions on the diagonal dominance of the matrices of the problem. Several numerical experiments, including large-scale problems of practical interest, demonstrate the capabilities of the proposed methods in various situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. It is easy to prove that \(\max \{0, w_i^*/a_{ii}\}\) and \(\max \{0, -w_i^*/b_{ii}\}\) are the solution \(x_i^*, y_i^*\) of the HLCP(\(A,B,{\varvec{c}}\)), \(i = 1, \ldots , n\). Indeed, replacing in the i-th row of \(A{\varvec{x}} - B {\varvec{y}} = {\varvec{c}}\), we have \(a_{ii}x_i^* - b_{ii}y_i^*=\max \{0, w_i^*\} - \max \{0, -w_i^*\}=w_i^*\). By the positivity of \(a_{ii}\) and \(b_{ii}\), we then have the nonnegativity of \(x_i\) and \(y_i\) and that \(x_i\) is positive when \(y_i=0\) (and vice versa).

  2. It is easy to notice that this is necessarily true if the hypotheses at the first point of the theorem hold.

References

  1. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Classics in Applied Mathematics. SIAM, University City (2009)

    Book  Google Scholar 

  2. Zhang, Y.: On the convergence of a class on infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Optimiz. 4(1), 208–227 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gowda, M.: Reducing a monotone horizontal LCP to an LCP. Appl. Math. Lett. 8(1), 97–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tütüncü, R.H., Todd, M.J.: Reducing horizontal linear complementarity problems. Linear Algebra Appl. 223(224), 717–729 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ralph, D.: A stable homotopy approach to horizontal linear complementarity problems. Control Cybern. 31, 575–600 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Gao, X., Wang, J.: Analysis and application of a one-layer neural network for solving horizontal linear complementarity problems. Int. J. Comput. Intell. Syst. 7(4), 724–732 (2014)

    Article  Google Scholar 

  7. Cryer, C.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 9, 385–392 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mangasarian, O.: Solution of symmetric linear complementarity problems by iterative methods. J. Optimiz. Theory Appl. 22, 465–485 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahn, B.H.: Solution of nonsymmetric linear complementarity problems by iterative methods. J. Optimiz. Theory App. 33(2), 175–185 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Varga, R.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  11. Mezzadri, F., Galligani, E.: An inexact Newton method for solving complementarity problems in hydrodynamic lubrication. Calcolo 55, 1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sznajder, R., Gowda, M.S.: Generalizations of \({P}_0\)- and \({P}\)-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 695–715 (1995)

    Article  MATH  Google Scholar 

  13. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  14. Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  15. Giacopini, M., Fowell, M., Dini, D., Strozzi, A.: A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. J. Tribol. 132, 041702 (2010)

    Article  Google Scholar 

  16. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.8, Argonne National Laboratory (2017). http://www.mcs.anl.gov/petsc

Download references

Acknowledgements

The authors desire to thank the anonymous referee for the valuable comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Mezzadri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzadri, F., Galligani, E. Splitting Methods for a Class of Horizontal Linear Complementarity Problems. J Optim Theory Appl 180, 500–517 (2019). https://doi.org/10.1007/s10957-018-1395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1395-1

Keywords

Mathematics Subject Classification

Navigation