Skip to main content
Log in

Pointwise and Ergodic Convergence Rates of a Variable Metric Proximal Alternating Direction Method of Multipliers

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we obtain global pointwise and ergodic convergence rates for a variable metric proximal alternating direction method of multipliers for solving linearly constrained convex optimization problems. We first propose and study nonasymptotic convergence rates of a variable metric hybrid proximal extragradient framework for solving monotone inclusions. Then, the convergence rates for the former method are obtained essentially by showing that it falls within the latter framework. To the best of our knowledge, this is the first time that global pointwise (resp. pointwise and ergodic) convergence rates are obtained for the variable metric proximal alternating direction method of multipliers (resp. variable metric hybrid proximal extragradient framework).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  2. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  3. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par penalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires (1975)

  4. Attouch, H., Soueycatt, M.: Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to games, PDE’s and control. Pac. J. Optim. 5(1), 17–37 (2008)

    MathSciNet  MATH  Google Scholar 

  5. He, B., Liu, H., Wang, Z., Yuan, X.: A strictly contractive peaceman-rachford splitting method for convex programming. SIAM J. Optim. 24(3), 1011–1040 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. In: Glowinski, R., Osher, S., Yin, W. (eds.) Splitting Methods in Communication, Imaging, Science and Engineering, pp. 115–163. Springer, New York (2016)

    Chapter  Google Scholar 

  8. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eckstein, J.: Some saddle-function splitting methods for convex programming. Optim. Method Softw. 4(1), 75–83 (1994)

    Article  MathSciNet  Google Scholar 

  10. Fang, E.X., Bingsheng, H., Liu, H., Xiaoming, Y.: Generalized alternating direction method of multipliers: new theoretical insights and applications. Math. Prog. Comput. 7(2), 149–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gonçalves, M.L.N., Melo, J.G., Monteiro, R.D.C.: Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-euclidean HPE framework. SIAM J. Optim. 27(1), 379–407 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hager, W.W., Yashtini, M., Zhang, H.: An \({O}(1/k)\) convergence rate for the variable stepsize Bregman operator splitting algorithm. SIAM J. Numer. Anal. 54(3), 1535–1556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B., Liao, L.Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92(1, Ser. A), 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, B., Yuan, X.: On the \(\cal{O}(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, T., Ma, S., Zhang, S.: An extragradient-based alternating direction method for convex minimization. Found. Comput. Math. 17(1), 35–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ouyang, Y., Chen, Y., Lan, G., Pasiliao Jr., E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imaging Sci. 8(1), 644–681 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shefi, R., Teboulle, M.: Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269–297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. BoŢ, R.I., Csetnek, E.R.: ADMM for monotone operators: convergence analysis and rates. https://arxiv.org/pdf/1705.01913.pdf

  20. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set Valued Anal. 7(4), 323–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cui, Y., Li, X., Sun, D., Toh, K.C.: On the convergence properties of a majorized ADMM for linearly constrained convex optimization problems with coupled objective functions. J. Optim. Theory Appl. 169(3), 1013–1041 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gonçalves, M.L.N., Melo, J.G., Monteiro, R.D.C.: Extending the ergodic convergence rate of the proximal ADMM. https://arxiv.org/pdf/1611.02903.pdf

  26. Shen, L., Pan, S.: Weighted iteration complexity of the sPADMM on the KKT residuals for convex composite optimization. https://arxiv.org/pdf/1611.03167.pdf

  27. He, B., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23(3–5), 151–161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, B.S., Yang, H., Wang, L.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Solodov, M.V.: A class of decomposition methods for convex optimization and monotone variational inclusions via the hybrid inexact proximal point framework. Optim. Method Softw. 19(5), 557–575 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lotito, P.A., Parente, L.A., Solodov, M.V.: A class of variable metric decomposition methods for monotone variational inclusions. J. Convex Anal. 16(3&4), 857–880 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Banert, S., BoŢ, R.I., Csetnek, E.R.: Fixing and extending some recent results on the ADMM algorithm. https://arxiv.org/pdf/1612.05057.pdf

  32. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20(6), 2755–2787 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, Y., Monteiro, R.D.C.: An accelerated HPE-type algorithm for a class of composite convex-concave saddle-point problems. SIAM J. Optim. 26(1), 29–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marques Alves, M., Monteiro, R.D.C., Svaiter, B.F.: Regularized HPE-type methods for solving monotone inclusions with improved pointwise iteration-complexity bounds. SIAM J. Optim. 26(4), 2730–2743 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Monteiro, R.D.C., Svaiter, B.F.: Complexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization problems. SIAM J. Optim. 21(4), 1688–1720 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Parente, L.A., Lotito, P.A., Solodov, M.V.: A class of inexact variable metric proximal point algorithms. SIAM J. Optim. 19(1), 240–260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  38. Burachik, R.S., Sagastizábal, C.A., Svaiter, B.F.: \(\epsilon \)-enlargements of maximal monotone operators: theory and applications. In: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (Lausanne, 1997), Appl. Optim., vol. 22, pp. 25–43. Kluwer Acad. Publ., Dordrecht (1999)

  39. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set Valued Anal. 5(2), 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The work of these authors was supported in part by CNPq Grants 406250/2013-8, 444134/2014-0, 309370/2014-0 and 406975/2016-7. We thank the reviewers for their careful reading and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max L. N. Gonçalves.

Additional information

Communicated by Hedy Attouch.

Appendix A Proofs of Theorems 3.1 and 3.2

Appendix A Proofs of Theorems 3.1 and 3.2

We start by presenting the following two Lemmas.

Lemma A.1

For any \(z^*,z,z_+,\tilde{z}\in \mathscr {Z}\) and \(M\in \mathscr {M}^{\mathscr {Z}}_{+}\), we have

$$\begin{aligned}&\Vert z^*-z\Vert _{\mathscr {Z},\,M}^2 - \Vert z^*-z_+\Vert _{\mathscr {Z},\,M}^2 = \Vert z-\tilde{z}\Vert _{\mathscr {Z},M}^2\\&\quad -\Vert z_+-\tilde{z}\Vert _{\mathscr {Z},M}^2 +2\langle \tilde{z}-z^*, M(z-z_+) \rangle _{\mathscr {Z}}. \end{aligned}$$

Proof

Direct calculations yield

$$\begin{aligned} \Vert z^*-z\Vert _{\mathscr {Z},M}^2-\Vert z^*-z_+\Vert _{\mathscr {Z},M}^2&=2\langle z_+-z^*, M(z-z_+)\rangle _{\mathscr {Z}}+ \Vert z_+-z\Vert _{\mathscr {Z},\,M}^2\\&= 2\langle z_+-\tilde{z}, M(z-z_+)\rangle _{\mathscr {Z}}\\&\quad +\,2\langle \tilde{z}-z^*, M(z-z_+)\rangle _{\mathscr {Z}}+ \Vert z_+-z\Vert _{\mathscr {Z},M}^2 \\&= 2\langle \tilde{z}-z^*, M(z-z_+)\rangle _{\mathscr {Z}}\\&\quad + \,\Vert \tilde{z}-z\Vert _{\mathscr {Z},M}^2- \Vert \tilde{z}-z_{+}\Vert _{\mathscr {Z},M}^2.\; \end{aligned}$$

\(\square \)

Lemma A.2

Let \(\{z_k\}\), \(\{M_k\}\), \(\{\tilde{z}_k\}\) and \(\{\eta _k\}\) be generated by the variable metric HPE framework. For every \(k \ge 1\) and \(z^* \in T^{-1}(0):\)

  1. (a)

    we have

    $$\begin{aligned} \Vert z^*-z_{k}\Vert _{\mathscr {Z},M_k}^2\le \Vert z^*-z_{k-1}\Vert _{\mathscr {Z},M_k}^2 +\eta _{k-1}-\eta _{k}-(1 - \sigma ) \Vert z_{k-1}-\tilde{z}_k\Vert _{\mathscr {Z},M_k}^2; \end{aligned}$$
  2. (b)

    we have

    $$\begin{aligned}&\Vert z^*-z_{k}\Vert _{\mathscr {Z},M_k}^2+\eta _k+(1-\sigma ) \displaystyle \sum _{i=1}^k\Vert z_{i-1}-\tilde{z}_i\Vert _{\mathscr {Z},M_i}^2 \\&\quad \le C_P (\Vert z^*-z_{0}\Vert _{\mathscr {Z},M_0}^2 + \eta _{0})\,, \end{aligned}$$

    where \(C_P\) and \(M_0\) are as in (11) and condition C1, respectively.

Proof

  1. (a)

    From Lemma A.1 with \((z,z_+,\tilde{z})=(z_{k-1},z_k,\tilde{z}_k)\) and \(M=M_k\), (12) and (13), we obtain

    $$\begin{aligned}&\Vert z^*-z_{k-1}\Vert _{\mathscr {Z},M_k}^2 - \Vert z^*-z_{k}\Vert _{\mathscr {Z},M_k}^2 +\eta _{k-1}\\&\quad \ge (1-\sigma ) \Vert z_{k-1}-\tilde{z}_k\Vert _{\mathscr {Z},M_k}^2+\eta _k + 2\langle \tilde{z}_k-z^*, r_k\rangle . \end{aligned}$$

    Hence, (a) follows from the above inequality, the fact that \(0 \in T(z^*)\) and \(r_k \in T(\tilde{z}_k)\) (see (12)), and the monotonicity of T.

  2. (b)

    Using (a), (3) and condition C1, we find

    $$\begin{aligned}&\Vert z^*-z_{k}\Vert _{\mathscr {Z},M_k}^2 \le (1+c_{k-1})\Vert z^*-z_{k-1}\Vert _{\mathscr {Z},\,M_{k-1}}^2\\&\quad +\,\eta _{k-1}-\eta _{k}-(1 - \sigma ) \Vert z_{k-1}-\tilde{z}_k\Vert _{\mathscr {Z},\,M_k}^2. \end{aligned}$$

    Thus, the result follows by applying the above inequality recursively and by using (11).\(\square \)

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1:

First, note that the desired inclusion holds due to (12). Now, using (2) and (13), we obtain, respectively,

$$\begin{aligned} \begin{aligned}&\Vert {z}_{k-1}-z_k\Vert _{\mathscr {Z},M_k}^2\le 2\left( \Vert {z_{k-1}}- {\tilde{z}}_k\Vert _{\mathscr {Z},M_k}^2+\Vert {\tilde{z}}_k-z_k\Vert _{\mathscr {Z},M_k}^2\right) ,\\&\Vert {\tilde{z}}_k-z_k\Vert _{\mathscr {Z},M_k}^2 \le \sigma \Vert {z_{k-1}}-\tilde{z}_{k}\Vert _{\mathscr {Z},M_k}^2+\eta _{k-1}-\eta _k. \end{aligned} \end{aligned}$$

Combining the above inequalities, we find

$$\begin{aligned} \Vert {z_{k-1}}- {z}_k\Vert _{\mathscr {Z},M_k}^2\le 2\left[ (1+\sigma ) \Vert {z_{k-1}}- {\tilde{z}}_k\Vert _{\mathscr {Z},M_k}^2+\eta _{k-1}-\eta _k\right] , \end{aligned}$$

which in turn, combined with Lemma A.2(b), yields

$$\begin{aligned} \sum _{i=1}^k \Vert {z_{i-1}}- {z}_i\Vert _{\mathscr {Z},M_i}^2 \le \frac{2(1+\sigma )C_P (\Vert z^*-z_{0}\Vert _{\mathscr {Z},M_0}^2 +\eta _{0})+ 2(1-\sigma )\eta _{0}}{ (1 - \sigma )}, \end{aligned}$$
(68)

for all \(z^*\in T^{-1}(0)\). Now, from (11), we obtain \(M_i\preceq C_P M_0\) for every \(i\ge 1\). Thus, it follows from (12) and Proposition 2.1 that

$$\begin{aligned} \sum _{i=1}^k \Vert r_i\Vert ^2_{\mathscr {Z}}= \sum _{i=1}^k\Vert M_i(z_{i-1}-z_i)\Vert ^2_{\mathscr {Z}}\le {C_P\Vert M_0\Vert } \sum _{i=1}^k\Vert {z_{i-1}}- {z}_i\Vert ^2_{\mathscr {Z},M_i}, \end{aligned}$$

which, combined with the fact that \(\sum _{i=1}^k\,t_i\ge k\min _{i=1,\dots , k} \{t_i\}\) and the definition in (14), proves (15). \(\square \)

Before proceeding to the proof of the ergodic convergence of the variable metric HPE framework, let us first present an auxiliary result.

Proposition A.1

Let \(\{z_k\}\), \(\{M_k\}\) and \(\{\eta _k\}\) be generated by the variable metric HPE framework and consider \(\{\tilde{z}_k^a\}\) and \(\{\varepsilon _k^a\}\) as in (18). Then, for every \(k\ge 1\),

$$\begin{aligned} \varepsilon _k^a \le \frac{1}{2k}\left( \eta _{0}+\Vert \tilde{z}^a_{k}-z_{0}\Vert _{\mathscr {Z},M_{0}}^2+ \sum _{i=1}^{k}c_{i-1}\Vert \tilde{z}^a_{k}-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\right) , \end{aligned}$$
(69)

where \(\{c_k\}\) is given in condition C1.

Proof

Using Lemma A.1 with \((z^*,z,z_+,\tilde{z})=(\tilde{z}^a_{k},z_{i-1},z_i,\tilde{z}_i)\) and \(M=M_i\), (12) and (13), we find, for every \(i=1,\dots ,k\),

$$\begin{aligned}&\Vert \tilde{z}^a_{k}-z_{i-1}\Vert _{\mathscr {Z},M_i}^2-\Vert \tilde{z}^a_{k}-z_{i}\Vert _{\mathscr {Z},M_i}^2 +\eta _{i-1}\\&\quad \ge (1-\sigma )\Vert \tilde{z}_i-z_{i-1}\Vert _{\mathscr {Z},M_i}^2+ \eta _i+2\langle r_i, \tilde{z}_i - \tilde{z}^a_{k}\rangle \\&\quad \ge \eta _i+2\langle r_i,\tilde{z}_i-\tilde{z}^a_{k}\rangle , \end{aligned}$$

where the second inequality is due to the fact that \(1-\sigma \ge 0\). Hence, using condition C1 and simple calculations, we obtain

$$\begin{aligned} \Vert \tilde{z}^a_{k}-z_{i}\Vert _{\mathscr {Z},M_i}^2\le & {} (1+c_{i-1})\Vert \tilde{z}^a_{k}-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\\&+\,\eta _{i-1}-\eta _{i}- 2\langle r_i, \tilde{z}_i -\tilde{z}^a_{k}\rangle \quad \forall i=1,\ldots ,k. \end{aligned}$$

Summing up the last inequality from \(i=1\) to \(i=k\) and using the definition of \(\varepsilon _k^a\) in (18), we have

$$\begin{aligned} 0\le \Vert \tilde{z}^a_{k}-z_k\Vert _{\mathscr {Z},M_k}^2\le & {} \sum _{i=1}^{k}c_{i-1}\Vert \tilde{z}^a_{k}-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\\&+\,\Vert \tilde{z}^a_{k}-z_{0}\Vert _{\mathscr {Z},M_{0}}^2 +\eta _{0}-2 k\,\varepsilon _k^a, \end{aligned}$$

which clearly gives (69). \(\square \)

Proof of Theorem 3.2:

Note first that the desired inclusion and the first inequality in (20) follow from (12), (18) and Theorem 2.1(a). Take \(z^*\in T^{-1}(0)\). Now, let us prove the second inequality in (20), which will follow by bounding the term in the right-hand side of (69). Note that, using the convexity of \(\Vert \cdot \Vert _{M_{i-1}}^2\), inequality (2) and (18), we find

$$\begin{aligned} \Vert \tilde{z}_k^a-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\le & {} \frac{1}{k}\sum _{j=1}^{k} \Vert \tilde{z}_j-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\nonumber \\\le & {} \frac{2}{k} \sum _{j=1}^{k}\left( \Vert \tilde{z}_j-z_j\Vert _{\mathscr {Z},M_{i-1}}^2+ \Vert z_j-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\right) . \end{aligned}$$
(70)

From (11), we have \(M_{i-1}\preceq C_PM_j\) for all \(j=1,\ldots , k\). Hence, using Proposition 2.1, inequality (13), Lemma A.2(b) and (14), we find

$$\begin{aligned} \sum _{j=1}^k\,\Vert \tilde{z}_j-z_j\Vert _{\mathscr {Z},M_{i-1}}^2&\le C_P\sum _{j=1}^k\,\Vert \tilde{z}_j-z_j\Vert _{\mathscr {Z},M_{j}}^2 \nonumber \\&\le {C_P}\sum _{j=1}^k\,\left( \sigma \Vert \tilde{z}_j-z_{j-1}\Vert ^2_{\mathscr {Z},M_j}+\eta _{j-1}-\eta _j\right) \nonumber \\&\le \dfrac{\sigma }{1-\sigma }C_p^2(d_0^2+\eta _0)+C_P\eta _0. \end{aligned}$$
(71)

On the other hand, using (2), \(M_{i-1}\preceq C_P M_j\) for all \(j=1,\ldots , k\), Proposition 2.1, Lemma A.2(b) and (14), we obtain

$$\begin{aligned} \sum _{j=1}^k\,\Vert z_j-z_{i-1}\Vert ^2_{\mathscr {Z},M_{i-1}}&\le 2 \sum _{j=1}^k\,\left( \Vert z_j-z^*\Vert _{\mathscr {Z},M_{i-1}}^2+\Vert z^*-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\right) \nonumber \\&\le 2 \sum _{j=1}^k\,\left( C_P\Vert z_j-z^*\Vert _{\mathscr {Z},M_{j}}^2+ \Vert z^*-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\right) \nonumber \\&\le 2(1+C_P)C_P(d_0^2+\eta _0)k. \end{aligned}$$
(72)

It follows from inequalities (70)–(72) and the fact that \(k\ge 1\) that

$$\begin{aligned} \Vert \tilde{z}_k^a-z_{i-1}\Vert _{\mathscr {Z},M_{i-1}}^2\le \left( \frac{\sigma C_P}{1-\sigma }+2(1+C_P)\right) 2C_P(d_0^2+\eta _0)+2C_P\eta _0, \end{aligned}$$

which, combined with Proposition A.1 and the first condition in (10), yields

$$\begin{aligned} \varepsilon ^a_{k}\le & {} \frac{1}{2k}\left[ 2C_P(1+C_S)\left( \frac{\sigma C_P}{1-\sigma }+2(1+C_P)\right) (d_0^2+\eta _0)\right. \\&\left. +\left( 1+2(1+C_S)C_P\right) \eta _0\right] . \end{aligned}$$

Therefore, the second inequality in (20) now follows from definition of \(\widehat{\mathscr {E}}\) and simple calculations.

To finish the proof of the theorem, it remains to prove (19). Assume first that \(k\ge 2\). Using (18) and simple calculations, we have

$$\begin{aligned} k\,r^a_{k}= & {} \sum _{i=1}^k\,r_i=M_1(z_0-z^*)-M_k(z_k-z^*)\nonumber \\&+\sum _{i=1}^{k-1} (M_{i+1}-M_i)(z_i-z^*). \end{aligned}$$
(73)

Since \(M_k\preceq C_P M_0\) and \(M_1\preceq C_P M_0\) (see (11)), we obtain from Proposition 2.1 that

$$\begin{aligned} \Vert M_k(z_k-z^*)\Vert _{\mathscr {Z}}&\le \sqrt{C_P\Vert M_0\Vert }\Vert z_k-z^*\Vert _{\mathscr {Z}, M_k}, \end{aligned}$$
(74)
$$\begin{aligned} \Vert M_1(z_0-z^*)\Vert _{\mathscr {Z}}&\le \sqrt{C_P\Vert M_0\Vert }\Vert z_0-z^*\Vert _{\mathscr {Z}, M_1}\nonumber \\&\le C_p\sqrt{\Vert M_0\Vert }\Vert z_0-z^*\Vert _{\mathscr {Z},M_0}. \end{aligned}$$
(75)

Next step is to estimate the general term in the summation in (73). To do this, first note that using condition C1, we find

$$\begin{aligned} 0\preceq L_i:=M_{i+1}-M_i + c_iM_{i+1}\preceq c_i (2+c_i)M_i,\quad \forall \, i=1,\ldots , k-1, \end{aligned}$$
(76)

and so

$$\begin{aligned} \Vert (M_{i+1}-M_i)(z_i-z^*)\Vert _{\mathscr {Z}}&=\Vert (L_i-c_iM_{i+1})(z_i-z^*)\Vert _{\mathscr {Z}}\nonumber \\&\le \Vert L_i(z_i-z^*)\Vert _{\mathscr {Z}}+c_i\Vert M_{i+1}(z_i-z^*)\Vert _{\mathscr {Z}}. \end{aligned}$$
(77)

It follows from the last inequality in (76) and (11) that \(L_i\preceq c_i(2+c_i)M_i\) and \(M_i\preceq C_P M_0\). Hence, we have

$$\begin{aligned} \Vert L_i(z_i-z^*)\Vert ^2_{\mathscr {Z}}&=\langle {L_i(L_i^{1/2}(z_i-z^*))},{L_i^{1/2}(z_i-z^*)}\rangle \nonumber \\&\le c_i(2+c_i)\langle {M_i(L_i^{1/2}(z_i-z^*))},{L_i^{1/2}(z_i-z^*)}\rangle \nonumber \\&\le c_i(2+c_i)C_P\langle {M_0(L_i^{1/2}(z_i-z^*))},{L_i^{1/2}(z_i-z^*)}\rangle \nonumber \\&\le c_i(2+c_i)C_P\Vert M_0 \Vert \Vert z_i-z^*\Vert ^2_{\mathscr {Z},L_i}\nonumber \\&\le c_i^2(2+c_i)^2C_P\Vert M_0 \Vert \Vert z_i-z^*\Vert ^2_{\mathscr {Z},M_i}. \end{aligned}$$
(78)

Again, using the facts that \(M_{i+1}\preceq C_P M_0\) and \(M_{i+1}\preceq (1+c_i)M_i\) (see (11)), and Proposition 2.1, we obtain

$$\begin{aligned} \Vert M_{i+1}(z_i-z^*)\Vert _{\mathscr {Z}}&\le \sqrt{C_p\Vert M_0\Vert }\Vert z_i-z^*\Vert _{\mathscr {Z}, M_{i+1}} \nonumber \\&\le \sqrt{C_P\Vert M_0\Vert (1+c_i)}\Vert z_i-z^*\Vert _{\mathscr {Z}, M_i}. \end{aligned}$$
(79)

Hence, using (11) and (77)–(79), we find

$$\begin{aligned} \Vert (M_{i+1}-M_i)(z_i-z^*)\Vert _{\mathscr {Z},M_k}&\le c_i\sqrt{C_p\Vert M_0\Vert }\left( 1+(1+c_i)+\sqrt{1+c_i}\,\right) \Vert z_i-z^*\Vert _{\mathscr {Z}, M_i}\nonumber \\&\le c_i\sqrt{C_P\Vert M_0\Vert }\left( 1+C_P+\sqrt{C_P}\right) \Vert z_i-z^*\Vert _{\mathscr {Z}, M_i}.\nonumber \\ \end{aligned}$$
(80)

Finally, using the definition of \(d_0\) in (14), (73)–(75), (80) and Lemma A.2(b), we conclude that

$$\begin{aligned} k\Vert r^a_k\Vert _{\mathscr {Z}}&\le \Vert M_1(z_0-z^*)\Vert _{\mathscr {Z}}+\Vert M_k(z_k-z^*)\Vert _{\mathscr {Z}}\\&\quad +\sum _{i=1}^{k-1}\,\Vert (M_{i+1}-M_i)(z_i-z^*)\Vert _{\mathscr {Z}}\\&\le \left( C_P+\sqrt{C_P}+C_S\sqrt{C_P}\left( 1+C_P+\sqrt{C_P}\right) \right) \\&\quad \sqrt{\Vert M_0\Vert }\max _{i=0,\ldots ,k}\,\Vert z_i-z^*\Vert _{\mathscr {Z},M_i}\\&\le \sqrt{C_P\Vert M_0\Vert }\left( C_P+\sqrt{C_P}+C_S\sqrt{C_P}\left( 1+C_P+\sqrt{C_P}\right) \right) \sqrt{d_0^2+\eta _0}\\&\le \left( (1+C_S)(1+\sqrt{C_P})C_P+C_SC_P^2\right) \sqrt{\Vert M_0\Vert }\sqrt{d_0^2+\eta _0} \end{aligned}$$

which gives (19) for the case \(k\ge 2\). Note now that by (11), we have \(M_1\preceq C_PM_0\) and so, using the second identity in (18) with \(k=1\), Proposition 2.1, Lemma A.2(b) and (14), we find

$$\begin{aligned} \Vert r_1^a\Vert _{\mathscr {Z}}=\Vert M_1(z_0-z_1)\Vert _{\mathscr {Z}}&\le \sqrt{C_P\Vert M_0\Vert }\Vert z_0-z_1\Vert _{\mathscr {Z},M_1}\\&\le \sqrt{C_P\Vert M_0\Vert }( \Vert z_0-z^*\Vert _{\mathscr {Z},M_1}+\Vert z_1-z^*\Vert _{\mathscr {Z},M_1})\\&\le \sqrt{C_P\Vert M_0\Vert }( \sqrt{C_P}\Vert z_0-z^*\Vert _{\mathscr {Z},M_0}+\Vert z_1-z^*\Vert _{\mathscr {Z},M_1})\\&\le (C_P+\sqrt{C_P})\sqrt{\Vert M_0\Vert }\max _{i=0,1}\,\Vert z_i-z^*\Vert _{\mathscr {Z},M_i}\\&\le (C_P+\sqrt{C_P})\sqrt{C_P\Vert M_0\Vert }\sqrt{d_0^2+\eta _0}\,, \end{aligned}$$

which, in turn, gives (19) for \(k=1\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, M.L.N., Alves, M.M. & Melo, J.G. Pointwise and Ergodic Convergence Rates of a Variable Metric Proximal Alternating Direction Method of Multipliers. J Optim Theory Appl 177, 448–478 (2018). https://doi.org/10.1007/s10957-018-1232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1232-6

Keywords

AMS subject classification

Navigation