A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers

Article

Abstract

This paper develops what is essentially a simplified version of the block-iterative operator splitting method already proposed by the author and P. Combettes, but with more general initialization conditions. It then describes one way of implementing this algorithm asynchronously under a computational model inspired by modern high-performance computing environments, which consist of interconnected nodes each having multiple processor cores sharing a common local memory. The asynchronous implementation framework is then applied to derive an asynchronous algorithm which resembles the alternating direction method of multipliers with an arbitrary number of blocks of variables. Unlike earlier proposals for asynchronous variants of the alternating direction method of multipliers, the algorithm relies neither on probabilistic control nor on restrictive assumptions about the problem instance, instead making only standard convex-analytic regularity assumptions. It also allows the proximal parameters to range freely between arbitrary positive bounds, possibly varying with both iterations and subproblems.

Keywords

Asynchronous algorithm Convex optimization Alternating direction method of multipliers (ADMM) 

Mathematics Subject Classification

47H05 47N10 90C25 65Y05 

References

  1. 1.
    Fortin, M., Glowinski, R.: On decomposition-coordination methods using an augmented Lagrangian. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and its Applications, vol. 15, pp. 97–146. North-Holland Publishing Co., Amsterdam (1983)Google Scholar
  2. 2.
    Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems, pp. 299–340. North-Holland, Amsterdam (1983). chap. IXCrossRefGoogle Scholar
  3. 3.
    Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives. Pac. J. Optim. 11(4), 619–644 (2015)MathSciNetMATHGoogle Scholar
  5. 5.
    Iutzeler, F., Bianchi, P., Ciblat, P., Hachem, W.: Asynchronous distributed optimization using a randomized alternating direction method of multipliers. In: Astolfi, A. (ed.) 52nd IEEE Conference on Decision and Control, pp. 3671–3676. IEEE, Piscataway (2013)CrossRefGoogle Scholar
  6. 6.
    Wei, E., Ozdaglar, A.: On the O\((1/k)\) convergence of asynchronous distributed alternating direction method of multipliers. In: Tewfik, A. (ed.) 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 551–554. IEEE, Piscataway (2013)CrossRefGoogle Scholar
  7. 7.
    Zhang, R., Kwok, J.: Asynchronous distributed ADMM for consensus optimization. In: Jebara, T., Xing, E.P. (eds.) Proceedings of the 31st International Conference on Machine Learning (ICML-14) pp. 1701–1709. (2014)Google Scholar
  8. 8.
    Mota, J.F.C., Xavier, J.M.F., Aguiar, P.M.Q., Püschel, M.: D-ADMM: a communication efficient distributed algorithm for separable optimization. IEEE Trans. Signal Proc. 61(10), 2718–2723 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chang, T.H., Hong, M., Liao, W.C., Wang, X.: Asynchronous distributed ADMM for large-scale optimization—part I: algorithm and convergence analysis. IEEE Trans. Signal Proc. 64(12), 3118–3130 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. (2016). doi:10.1007/s10107-016-1044-0
  11. 11.
    Chen, C., Sun, R., Ye, Y.: On convergence of the multi-block alternating direction method of multipliers. In: Proceedings of the 8th International Congress on Industrial and Applied Mathematics, pp. 3–15. Higher Ed. Press, Beijing (2015)Google Scholar
  12. 12.
    Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program. 111(1–2, Ser. B), 173–199 (2008)MathSciNetMATHGoogle Scholar
  13. 13.
    Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48(2), 787–811 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Alotaibi, A., Combettes, P.L., Shahzad, N.: Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set. SIAM J. Optim. 24(4), 2076–2095 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Combettes, P.L.: Féjer monotonicity in convex optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 106–114. Springer, Berlin (2001)Google Scholar
  17. 17.
    Bauschke, H.H.: A note on the paper by Eckstein and Svaiter on General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48(4), 2513–2515 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Svaiter, B.F.: On weak convergence of the Douglas–Rachford method. SIAM J. Control Optim. 49(1), 280–287 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, NJ (1970)Google Scholar
  20. 20.
    Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Management Science and Information Systems (MSIS) and RUTCORRutgers UniversityPiscatawayUSA

Personalised recommendations