Skip to main content
Log in

Stochastic Matrix-Free Equilibration

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a novel method for approximately equilibrating a matrix using only multiplication by the matrix and its transpose. Our method is based on convex optimization and projected stochastic gradient descent, using an unbiased estimate of a gradient obtained by a randomized method. Our method provably converges in expectation and empirically gets good results with a small number of iterations. We show how the method can be applied as a preconditioner for matrix-free iterative algorithms, substantially reducing the iterations required to reach a given level of precision. We also derive a novel connection between equilibration and condition number, showing that equilibration minimizes an upper bound on the condition number over all choices of row and column scalings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hwang, I., Balakrishnan, H., Roy, K., Shin, J., Guibas, L., Tomlin, C.: Multiple-target tracking and identity management. In: Proceedings of IEEE Sensors, pp. 36–41 (2003)

  2. Knight, P.: The Sinkhorn–Knopp algorithm: convergence and applications. SIAM J. Matrix Anal. Appl. 30(1), 261–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Schneider, M., Zenios, S.: A comparative study of algorithms for matrix balancing. Oper. Res. 38(3), 439–455 (1990)

    Article  MATH  Google Scholar 

  4. Bradley, A.: Algorithms for the equilibration of matrices and their application to limited-memory Quasi-Newton methods. Ph.D. thesis, Stanford University (2010)

  5. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)

    MATH  Google Scholar 

  6. Takapoui, R., Javadi, H.: Preconditioning via diagonal scaling. EE364b: Convex Optimization II Class Project (2014). http://stanford.edu/class/ee364b/projects/2014projects/reports/takapoui_javadi_report.pdf

  7. Giselsson, P., Boyd, S.: Diagonal scaling in Douglas–Rachford splitting and ADMM. In: Proceedings of the IEEE Conference on Decision and Control, pp. 5033–5039 (2014)

  8. Kelley, C.: Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1995)

    Book  MATH  Google Scholar 

  9. Greenbaum, A.: Iterative Methods for Solving Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  10. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1762–1769 (2011)

  11. Giselsson, P., Boyd, S.: Metric selection in fast dual forward-backward splitting. Automatica 62, 1–10 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14(1), 14–23 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21(2), 343–348 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical report, Rutherford Appleton Lab., Oxon, UK, RAL-TR-2001-034 (2001)

  15. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  16. Paige, C., Saunders, M.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fougner, C., Boyd, S.: Parameter selection and pre-conditioning for a graph form solver. Preprint (2015). arXiv:1503.08366v1

  19. Balakrishnan, H., Hwang, I., Tomlin, C.: Polynomial approximation algorithms for belief matrix maintenance in identity management. In: Proceedings of the IEEE Conference on Decision and Control, pp. 4874–4879 (2004)

  20. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  21. Corless, R., Gonnet, G., Hare, D., Jeffrey, D., Knuth, D.: On the Lambert \(W\) function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoorfar, A., Hassani, M.: Inequalities on the Lambert \(W\) function and hyperpower function. J. Inequal. Pure Appl. Math. 9, 1–5 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Bekas, C., Kokiopoulou, E., Saad, Y.: An estimator for the diagonal of a matrix. Appl. Numer. Math. 57(11–12), 1214–1229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hutchinson, M.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 19(2), 433–450 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lacoste-Julien, S., Schmidt, M., Bach, F.: A simpler approach to obtaining an \({O}(1/t)\) convergence rate for the projected stochastic subgradient method. Preprint (2002). arXiv:1212.2002v2

  26. Bubeck, S.: Convex optimization: algorithms and complexity. Found. Trends Mach. Learn. 8(3–4), 231–357 (2015)

    Article  MATH  Google Scholar 

  27. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford–Shah functional. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1133–1140 (2009)

  28. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning, Springer Series in Statistics, vol. 1. Springer, New York (2001)

    MATH  Google Scholar 

  29. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2015). http://www.gurobi.com

  31. Lehoucq, R., Sorensen, D.: Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17(4), 789–821 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and homogeneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042–1068 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Diamond, S., Boyd, S.: Convex optimization with abstract linear operators. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 675–683 (2015)

  34. Diamond, S., Boyd, S.: Matrix-free convex optimization modeling. In: Goldengorin, B. (ed.) Optimization and Applications in Control and Data Sciences, Springer Optimization and Its Applications, vol. 115. Springer (2016, to appear)

Download references

Acknowledgments

The authors thank Reza Takapoui for helpful comments and pointers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747 and by the DARPA XDATA and SIMPLEX programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Diamond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diamond, S., Boyd, S. Stochastic Matrix-Free Equilibration. J Optim Theory Appl 172, 436–454 (2017). https://doi.org/10.1007/s10957-016-0990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0990-2

Keywords

Mathematics Subject Classification

Navigation