Skip to main content
Log in

On Some Basic Results Related to Affine Functions on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study some basic properties related to affine functions on Riemannian manifolds. A characterization for a function to be linear affine is given and a counterexample on Poincaré plane is provided, which, in particular, shows that assertions (i) and (ii) claimed by Papa Quiroz in (J Convex Anal 16(1):49–69, 2009, Proposition 3.4) are not true, and that the function involved in assertion (ii) is indeed not quasi-convex. Furthermore, we discuss the convexity properties of the sub-level sets of the function on Riemannian manifolds with constant sectional curvatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Udriste, C.: Convex functions and optimization methods on Riemannian manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994)

  2. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Kristály, A., Li, C., López, G., Nicolae, A.: What do “convexities” imply on Hadamard manifolds?. J. Optim. Theory Appl. doi:10.1007/s10957-015-0780-2

  4. Quiroz, EAPapa: An extension of the proximal point algorithm with Bregman distances on Hadamard manifolds. J. Glob. Optim. 56(1), 43–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388(1), 61–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou, L., Huang, N.: Existence of solutions for vector optimization on Hadamard manifolds. J. Optim. Theory Appl. 157(1), 44–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferreira, O.P., Lucambio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31, 133–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. do Carmo, M.P.: Riemannian Geometry. Birkhäuser Boston, Boston (1992)

    Book  MATH  Google Scholar 

  9. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)

    Google Scholar 

  10. Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96, 413–443 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, S.L., Li, C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Walter, R.: On the metric projection onto convex sets in Riemannian spaces. Arch. Math. 25, 91–98 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21, 1523–1560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486–2514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, X.M., Li, C., Yao, J.C.: Projection algorithms for solving convex feasibility problems on Hadamard manifolds. J. Nonliner Convex Anal (in press)

  17. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  18. O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, San Diego (1983)

    MATH  Google Scholar 

  19. Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control Optim. 51(3), 2230–2260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to both anonymous reviewers for their valuable suggestions and remarks. Research of the first author is supported in part by the Scientific Research Projects of Guizhou University (Grant 201406). Research of the second author is supported in part by the National Natural Science Foundation of China (Grants 11571308, 11371325). Research of the third author is supported in part by the Grant MOST 102-2115-M-039-003-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Additional information

Communicated by Sándor Zoltán Németh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, C. & Yao, JC. On Some Basic Results Related to Affine Functions on Riemannian Manifolds. J Optim Theory Appl 170, 783–803 (2016). https://doi.org/10.1007/s10957-016-0979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0979-x

Keywords

Mathematics Subject Classification

Navigation