Skip to main content
Log in

Variational Inequalities Characterizing Weak Minimality in Set Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We introduce the notion of weak minimizer in set optimization. Necessary and sufficient conditions in terms of scalarized variational inequalities of Stampacchia and Minty type, respectively, are proved. As an application, we obtain necessary and sufficient optimality conditions for weak efficiency of vector optimization in infinite-dimensional spaces. A Minty variational principle in this framework is proved as a corollary of our main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Capelo, A., Jayakar, L.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  2. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1984)

    Google Scholar 

  3. Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)

    Google Scholar 

  4. Al-Homidan, S., Ansari, Q.H.: Generalized Minty vector variational-like inequalities and vector optimization problems. J. Optim. Theory Appl. 144(1), 1–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Giannessi, F.: On Minty variational principle. In: Giannessi, F., Komlóski, S., Rapesák, T. (eds.) New Trends in Mathematical Programming, pp. 93–99. Springer-Verlag, Berlin (1998)

    Chapter  Google Scholar 

  6. F. Giannessi, G. Mastroeni, L. Pellegrini. On the theory of vector optimization and variational inequalities. Image space analysis and separation. In: Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, vol. 38, pp. 153–215. Springer, US (2000).

  7. Komlósi, S.: On the Stampacchia and Minty variational inequalities. In: Giorgi, G., Rossi, F. (eds.) Generalized Convexity and Optimization for Economic and Financial Decisions, pp. 231–260. Pitagora Editrice, Bologna, Italy (1999)

    Google Scholar 

  8. Li, J., Mastroeni, G.: Vector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functions. J. Optim. Theory Appl. 145(2), 355–372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20(3), 493–519 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Minty, G.J.: On the generalization of a direct method of the calculus of variations. Bull. Am. Math. Soc. 73(3), 315–321 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stampacchia, G.: Formes bilinéaires coercitives sur les Ensembles convexes. C R Acad. Sci. 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  12. Crespi, G.P., Ginchev, I., Rocca, M.: Minty variational inequalities, increase-along-rays property and optimization. J. Optim. Theory Appl. 123(3), 479–496 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crespi, G.P., Ginchev, I., Rocca, M.: Some remarks on the Minty vector variational principle. J. Math. Anal. Appl. 345(1), 165–175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, X.M., Yang, X.Q., Teo, K.L.: Some remarks on the Minty vector variational inequality. J. Optim. Theory Appl. 121(1), 193–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Corley, H.W.: Optimality conditions for maximizations of set-valued functions. J. Optim. Theory Appl. 58(1), 1–10 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Corley, H.W.: Existence and Lagrangian duality for maximizations of set-valued functions. J. Optim. Theory Appl. 54(3), 489–501 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luc, D.T.: Theory of Vector Optimization. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  18. Hamel, A.H.: Variational Principles on Metric and Uniform Spaces. Habilitationsschrift, Halle (2005)

    Google Scholar 

  19. Heyde, F., Löhne, A.: Solution concepts in vector optimization. A fresh look at an old story. Optimization 60(12), 1421–1440 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Löhne. Optimization with Set Relations. Ph.D. thesis, MLU Halle-Wittenberg, Halle (2005).

  21. Löhne, A.: Vector Optimization with Infimum and Supremum. Springer-Verlag, Berlin (2011)

    Book  MATH  Google Scholar 

  22. Crespi, G.P., Ginchev, I., Rocca, M.: Minty variational principle for set-valued variational inequalities. Pac. J. Optim. 6(1), 39–56 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Crespi, G.P., Schrage C.: Applying set optimization to weak efficiency. submitted.

  24. Crespi, G.P., Schrage, C.: Set optimization meets variational inequalities. Springer Proceeding, ’Set Optimization, State of Art’ (to be published)

  25. M. Pilecka. Optimality conditions in set-valued programming using the set criterion. http://tu-freiberg.de/sites/default/files/media/fakultaet-1-9277/page/2014-02-fertig

  26. Maeda, T.: On optimization problems with set-valued objective maps. Appl. Math. Comput. 217(3), 1150–1157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuroiwa, D.: The natural criteria in set-valued optimization. RIMS Kokyuroku 1031, 85–90 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Aubin, J.-P.: A Pareto minimal principle. In: Kuhn, H.W., Szegö, G.P. (eds.), Differential Games and Related Topics, pp. 147–175. North-Holland Pub. Co., Amsterdam (1971)

  29. Heyde, F., Schrage, C.: Continuity of set-valued maps and a fundamental duality formula for set-valued optimization. J. Math. Anal. Appl. 397(2), 772–784 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325(1), 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuroiwa, D.: Convexity for set-valued maps. Appl. Math. Lett. 9(2), 97–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuroiwa, D., Tanaka, T., Truong, X.D.H.: On cone convexity of set-valued maps. Nonlinear Anal. 30(3), 1487–1496 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Crespi, G.P., Hamel, A.H., Schrage, C.: A minty variational principle for set-valued optimization. J. Math. Anal. Appl. 423(1), 770–796 (2015). doi:10.1016/j.jmaa.2014.10.010

  34. Aubin, J.-P., Cellina, A.: Differential Inclusions. Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264. Springer-Verlag, Berlin (1984)

  35. Kuwano, I., Tanaka, T.: Continuity of cone-convex functions. Optim. Lett. 6, 1847–1853 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Suneja, S.K., Kohli, B.: Vector variational inequalities and their relations with vector optimization. Int. J. Optim. Control Theory Appl. 4(1), 35–44 (2014)

    Article  MathSciNet  Google Scholar 

  37. Ansari, Q.H., Lee, G.M.: Nonsmooth vector optimization problems and Minty vector variational inequalities. J. Optim. Theory Appl. 145(1), 1–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Crespi, G.P., Guerraggio, A., Rocca, M.: Minty variational inequality and optimization: scalar and vector case. In: Eberhard, A., Hadjisavvas, N., Luc, D.T. (eds.) Generalized Convexity, Generalized Monotonicity and Applications, pp. 193–211. Springer-Verlag, Berlin (2005)

    Chapter  Google Scholar 

  39. Crespi, G.P., Ginchev, I., Rocca, M.: Minty vector variational inequality, efficiency and proper efficiency. Vietnam J. Math. 32(1), 95–107 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Crespi, G.P.: Proper efficiency and vector variational inequalities. J. Inform. Optim. Sci. 23(1), 49–62 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Dedekind, R.: Stetigkeit und irrationale Zahlen (1872). In: Fricke, R., Noether, E., Ore, O. (eds.) Richard Dedekind, Gesammelte Mathematische Werke, 5th edn. Verlag Vieweg & Sohn, Braunschweig (1927)

    Google Scholar 

  42. Diewert, W.E.: Alternative characterizations of six kinds of quasiconvexity in the nondifferentiable case with applications to nonsmooth programming. In: Schaible, S., Ziemba, W.T. (eds.), Generalized Concavity in Optimization and Economics, pp. 51–93, Academic Press, New York (1981)

Download references

Acknowledgments

The authors are extremely thankful to the two anonymous referees and the editor who has provided several suggestions to improve the paper to its current form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Rocca.

Appendix

Appendix

For the readers convenience, we include the proofs of those results quoted from [23, 33].

Addition and subtraction are extended from real to extended real numbers as follows, compare [41]:

Proposition 2.2 ([23, Proposition 2.11]) Let \(A,B\in \mathcal {P}(Y)\) be given such that \(B+C\) is convex. Then \(A\ll B\) implies

$$\begin{aligned} \forall w^*\in W^*:\quad \inf \limits _{a\in A}w^*(a)=-\infty \;\vee \;\inf \limits _{a\in A}w^*(a)<\inf \limits _{b\in B}w^*(b), \end{aligned}$$

which in turn implies that \(A<B\) if \(A+C\) is convex.

Proof

Indeed, \(A\ll B\) by definition implies \(B+U\subseteq A+C\) for some \(U\in \mathcal U_Y(0)\), thus

$$\begin{aligned} \forall w^*\in W^*:\inf \limits _{a\in A}w^*(a)\le \inf \limits _{\begin{array}{c} b\in B,\\ u\in U \end{array}}w^*(b+u)=\inf \limits _{b\in B}w^*(b)+\inf \limits _{u\in U}w^*(u). \end{aligned}$$

But as \(\inf \limits _{u\in U}w^*(u)<0\) is true for all \(w^*\in W^*\), this is the first implication. As for the second implication, assume \(B\nsubseteq \mathrm{int\,}(A+C)\) and \(A+C\) convex. Then by a separation theorem,

$$\begin{aligned} \exists w^*\in W^*:\inf \limits _{b\in B}w^*(b)\le \inf \limits _{a\in A}w^*(a)\ne -\infty , \end{aligned}$$

as \(\mathrm{int\,}(A+C)\ne \emptyset \) is assumed. \(\square \)

Proposition 2.3 ([33, Proposition 4.13]) Let \(\varphi :{\mathrm {I}}\!{\mathrm {R}}\rightarrow \overline{{\mathrm {I}}\!{\mathrm {R}}}\) be semistrictly quasiconvex and l.s.c. with \(\mathrm{dom \,}\varphi \subseteq \left[ 0,1 \right] \). Then there exist \(s_0 \le t_0 \in \left[ 0,1 \right] \) such that \(\varphi \) is strictly decreasing on \( \left] 0, s_0 \right[ \), strictly increasing on \( \left] t_0,1 \right[ \) and constantly equal to \(\inf \left\{ \varphi (x)\,|\;x\in {\mathrm {I}}\!{\mathrm {R}} \right\} \) on \( \left[ s_0, t_0 \right] \).

Proof

Let \(\varphi (0)=\varphi (1)\) be given, \(t\in \left[ 0,1 \right] \). If \(\varphi (t)>\varphi (0)\), then \(\varphi (s)<\varphi (t)\) and thus also \(\varphi (s)=\varphi (0)\) is true for all \(s\in \left[ 0,1 \right] \setminus \left\{ t \right\} \) by semistrict quasiconvexity of \(\varphi \). Lower semicontinuity of \(\varphi \) thus implies \(\varphi (t)\le \varphi (0)\), a contradiction. Define the level sets of \(\varphi \) w.r.t. \(k\in \overline{{\mathrm {I}}\!{\mathrm {R}}}\) as

$$\begin{aligned} L^\le _\varphi (k)= \left\{ x\in \left[ 0,1 \right] \,|\;\varphi (x)\le t \right\} . \end{aligned}$$

By the above \(L^\le _\varphi (k)\) is convex and \(L^\le _\varphi (k)\) is closed by lower semicontinuity of \(\varphi \) for all \(k\in \overline{{\mathrm {I}}\!{\mathrm {R}}}\). Especially,

$$\begin{aligned} L^\le _\varphi \left( \inf \limits _{x\in \left[ 0,1 \right] }\varphi (x)\right) =\bigcap \limits _{x\in \left[ 0,1 \right] }L^\le _\varphi (\varphi (x))= \left[ s_0,t_0 \right] \end{aligned}$$

is a closed convex set, and hence either \(-\infty \) is attained in some \(x\in \left[ 0,1 \right] \), trivially implying \(L^\le _\varphi (\inf \limits _{x\in \left[ 0,1 \right] }\varphi (x))\ne \emptyset \), or the Weierstrass Theorem implies that the infimum of the lower semicontinuous function \(\varphi \) is attained on the compact set \( \left[ 0,1 \right] \).

Under the assumption of \(0<s<t\le s_0\), semistrict quasiconvexity of \(\varphi \) implies \(\varphi (0)>\varphi (s)>\varphi (s_0)\) and \(\varphi (s)>\varphi (t)>\varphi (s_0)\), as \(\varphi (s_0)=\inf \limits _{x\in \left[ 0,1 \right] }\varphi (x)\). But thus \(\varphi \) is strictly decreasing on \( \left[ 0,s_0 \right] \) and the same arguments prove strict monotonicity on the interval \( \left[ t_0,1 \right] \). \(\square \)

The following result is Diewert’s Mean Value Theorem [42].

Proposition 7.1

Let \(\varphi :X \rightarrow \overline{{\mathrm {I}}\!{\mathrm {R}}}\) and \(a, b\in X\) be such that \(\varphi _{a,b} : \left[ 0,1 \right] \rightarrow {\mathrm {I}}\!{\mathrm {R}}\) is lower semicontinuous and real-valued. Then, there exist \(0 \le t < 1\) and \(0 < s \le 1\) such that

$$\begin{aligned} \varphi (b) - \varphi (a)&\le ( \varphi _{a,b})^\downarrow (t,1) \; \text {and} \\ \varphi (a) - \varphi (b)&\le ( \varphi _{a,b})^\downarrow (s,-1). \end{aligned}$$

By a careful case study, we extend this classical result to the case when \(\varphi _{a,b} : \left[ 0,1 \right] \rightarrow \overline{{\mathrm {I}}\!{\mathrm {R}}}\) is extended real-valued and not necessarily proper. Then, the difference has to be replaced by the inf-residual in \(\overline{{\mathrm {I}}\!{\mathrm {R}}}\)

Especially,

Theorem 7.1

([33, Theorem 4.2]) Let \(\varphi :X \rightarrow \overline{{\mathrm {I}}\!{\mathrm {R}}}\) and \(a, b \in X\) be given such that \(a \ne b\) and \(\varphi _{a,b} :{\mathrm {I}}\!{\mathrm {R}}\rightarrow \overline{{\mathrm {I}}\!{\mathrm {R}}}\) is lower semicontinuous. Then

  1. (a)

    If either \(\varphi (a) = +\infty \), or \( \left\{ a,b \right\} \subseteq \mathrm{dom \,}\varphi \), then there exists \(0\le t< 1\) such that

  2. (b)

    If either \(\varphi (b)=+\infty \), or \( \left\{ a,b \right\} \subseteq \mathrm{dom \,}\varphi \), then there exists \(0< s \le 1\) such that

Proof

  1. (a)

    The proof of the first inequality is given via a case study. If \(\varphi (a)=+\infty \) or \(\varphi (b)=-\infty \), then

    so the first inequality is trivially satisfied. Next, assume \( \left\{ a,b \right\} \subseteq \mathrm{dom \,}\varphi \) and \(\varphi (b)\ne -\infty \). If \(\varphi _{a,b}(t)=-\infty \) for some \(0\le t<1\), then by lower semicontinuity \(\varphi _{a,b}(t_0)=-\infty \), setting

    $$\begin{aligned} t_0=\sup \left\{ t\in \left[ 0,1 \right] \,|\;\varphi _{a,b}(t)=-\infty \right\} \end{aligned}$$

    and by assumption \(t_0<1\). Hence, \(\left( \varphi _{a,b} \right) ^\downarrow (t_0,1)=+\infty \), satisfying the first inequality. Finally, let \( \left\{ a,b \right\} \subseteq \mathrm{dom \,}\varphi \), \(\varphi (a+t(b-a))\ne -\infty \) be assumed for all \(0\le t\le 1\) and \(\varphi _{a,b}(t)=+\infty \) for some \(0<t<1\) and set

    $$\begin{aligned} t_0=\inf \left\{ t\in \left] 0,1 \right[ \,|\;\varphi _{a,b}(t)=+\infty \right\} . \end{aligned}$$

    If \(t_0=0\), then we are finished, as in this case \(\left( \varphi _{a,b} \right) ^\downarrow (0,1)=+\infty \) is true, and hence assume \(0<t_0\). In this case, \(\varphi _{a,b} \left[ 0,t \right] \subseteq {\mathrm {I}}\!{\mathrm {R}}\) is true for all \(t\in \left] 0,t_0 \right[ \), and the above result combined with Proposition 7.1 applied to \(b_t=a+t(b-a)\) gives that for all \(0 < t < t_0\) there exists a \(0\le \bar{t}<1\) such that

    But as \(\left( \varphi _{a,a+t(b-a)} \right) ^\downarrow (\bar{t},1)=t\left( \varphi _{a,b} \right) ^\downarrow (\bar{t},1)\) is true and by lower semicontinuity of \(\varphi _{a,b}\) the value \(\varphi (a+t(b-a))\) converges to \(+\infty \) as \(t\) converges to \(t_0\), this implies that \(\left( \varphi _{a,b} \right) ^\downarrow (\bar{t},1)\) converges to \(+\infty \) and eventually satisfies the desired inequality,

    as \(\varphi (b)\) and \(\varphi (a)\in {\mathrm {I}}\!{\mathrm {R}}\) was assumed. The real-valued case is Proposition 7.1.

  2. (b)

    Notice that \(\varphi _{a,b}(s)=\varphi _{b,a}(1-s)\) and

    $$\begin{aligned} \left( \varphi _{a,b} \right) ^\downarrow (s,-1)=\left( \varphi _{b,a} \right) ^\downarrow ((1-s),1), \end{aligned}$$

and hence the result is immediate from the above. \(\square \)

Proposition 7.2

([33, Proposition 4.14]) If \(\mathrm{dom \,}\varphi \) is star shaped at \(x_0\) and \(\varphi \) is radially pseudoconvex and l.s.c. w.r.t. \(x_0\), then it is radially semistrictly quasiconvex w.r.t. \(x_0\).

Proof

Assume that for some \(b\in \mathrm{dom \,}\varphi \), the function \(\varphi _{a,b}\) is not semistrictly quasiconvex. Then there are \(r, s, t \in {\mathrm {I}}\!{\mathrm {R}}\) such that \(0 \le r < s < t \le 1\) and \(\varphi _{a,b}\left( r \right) \ne \varphi _{a,b}(t)\) and

$$\begin{aligned} \max \left\{ \varphi _{a,b}\left( r \right) , \varphi _{a,b}(t) \right\} \le \varphi _{a,b}(s). \end{aligned}$$

We assume \(\varphi _{a,b}\left( r \right) < \max \left\{ \varphi _{a,b}\left( r \right) , \varphi _{a,b}\left( t \right) \right\} = \varphi _{a,b}\left( t \right) \). The other case can be dealt with by symmetric arguments.

Fix \(\delta > 0\) such that \(\varphi _{a,b}\left( r \right) < \varphi _{a,b}\left( t \right) - \delta \). Since \(\varphi _{a,b}\) is l.s.c., the set

$$\begin{aligned} \left\{ s' \in {\mathrm {I}}\!{\mathrm {R}}\mid \varphi _{a,b}\left( s' \right) > \varphi _{a,b}\left( t \right) - \delta \right\} \end{aligned}$$

is open. Hence, there is \(\varepsilon > 0\) such that \([s - \varepsilon , s + \varepsilon ] \subseteq \left( r, t \right) \) and

$$\begin{aligned} \forall s' \in [s - \varepsilon , s + \varepsilon ] :\varphi _{a,b}\left( t \right) - \delta < \varphi _{a,b}\left( s' \right) \in {\mathrm {I}}\!{\mathrm {R}}. \end{aligned}$$

Take \(s' \in [s, s+\varepsilon [\), \(s'' \in ]s', s+\varepsilon ]\) and assume \(\varphi _{a,b}\left( s'' \right) < \varphi _{a,b}\left( s' \right) \). By Diewerts Mean Value Theorem, there exists an \(\hat{s} \in ]s' , s'']\) satisfying

$$\begin{aligned} 0 < \varphi _{a,b}\left( s' \right) - \varphi _{a,b}\left( s'' \right) \le \left( \varphi _{a,b} \right) ^\downarrow \left( \hat{s}, s' - s'' \right) . \end{aligned}$$

Indeed, setting \(a' = a+s'(b-a)\) and \(b' = a+s''(b-a)\), one obtains by Diewerts Mean Value Theorem at \(\alpha \in ]0, 1]\) satisfying \(\varphi \left( a' \right) - \varphi \left( b' \right) \le \left( \varphi _{a',b'} \right) ^\downarrow \left( \alpha , -1 \right) \). Defining

$$\begin{aligned} \hat{s} = s' + \alpha (s''-s') \in ]s', s''], \end{aligned}$$

one obtains above inequality by observing \(\varphi \left( a' \right) = \varphi _{a,b}\left( s' \right) \), \(\varphi \left( b' \right) = \varphi _{a,b}\left( s'' \right) \) and ultimately \(\left( \varphi _{a',b'} \right) ^\downarrow \left( \alpha , -1 \right) = \left( \varphi _{a,b} \right) ^\downarrow \left( \hat{s}, s' - s'' \right) \).

Using the positive homogeneity of the directional derivative, we can multiply the inequality \(0 < \left( \varphi _{a,b} \right) ^\downarrow \left( \hat{s}, s' - s'' \right) \) by \(\frac{r - \hat{s}}{s' - s''} > 0\) and thus obtain \(0 < \left( \varphi _{a,b} \right) ^\downarrow \left( \hat{s}, r - \hat{s} \right) \). The pseudoconvexity of \(\varphi _{a,b}\) yields \(\varphi _{a,b}\left( r \right) \ge \varphi _{a,b}\left( \hat{s} \right) \) in contradiction to the assumption that \(\varphi _{a,b}\left( r \right) < \varphi _{a,b}\left( t \right) - \delta < \varphi _{a,b}\left( \hat{s} \right) \) (observe \(\hat{s} \in [s, s+\varepsilon ]\)). Hence, \(\varphi _{a,b}\left( s'' \right) \ge \varphi _{a,b}\left( s' \right) \) whenever \(s', s'' \in [s, s+\varepsilon ]\) and \(s' < s''\). This implies

$$\begin{aligned} \forall s' \in [s, s+\varepsilon ) :\left( \varphi _{a,b} \right) ^\downarrow \left( s', 1 \right) \ge 0, \end{aligned}$$

and positive homogeneity of the directional derivative implies

$$\begin{aligned} \left( \varphi _{a,b} \right) ^\downarrow \left( s', t-s' \right) \ge 0 \end{aligned}$$

and this by pseudoconvexity of \(\varphi _{a,b}\)

$$\begin{aligned} \varphi _{a,b}\left( t \right) \ge \varphi _{a,b}\left( s' \right) \ge \varphi _{a,b}\left( s \right) \ge \varphi _{a,b}\left( t \right) . \end{aligned}$$

This means \(\varphi _{a,b}\left( s' \right) = \varphi _{a,b}\left( t \right) \) for all \(s' \in [s, s+\varepsilon )\). In turn, this implies that for \(s' \in \left] s, s+\varepsilon \right[ \) we have \(\left( \varphi _{a,b} \right) ^\downarrow \left( s', -1 \right) \ge 0\), and hence \(\left( \varphi _{a,b} \right) ^\downarrow \left( s', r- s' \right) \ge 0\) and by pseudoconvexity \(\varphi _{a,b}\left( s' \right) \le \varphi _{a,b}\left( r \right) \). This contradicts the assumption \(\varphi _{a,b}\left( r \right) < \varphi _{a,b}\left( t \right) \), and hence (together with the symmetric case) the function \(\varphi _{a,b}\) is semistrictly quasiconvex for all \(b \in \mathrm{dom \,}\varphi \). \(\square \)

Proposition 4.1 ([23, Proposition 4.5]) Let \(F:X\rightrightarrows Y\) be a \(C\) -map, \(x_0\in \mathrm{dom \,}F\). If \(x_0\) solves the scalarized Stampacchia variational inequality (4.1), then it is a scalarized weak minimizer.

$$\begin{aligned} F(x_0)+C=Y\quad \vee \quad \forall x\in X\, \exists w^*\in W^*:\quad \left( \left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle } \right) ^\downarrow (x_0,x-x_0)\ge 0 \end{aligned}$$
(4.1)

Proof

Assume to the contrary that \(F(x_0)+C\ne Y\) and it exists \(x\in X\) such that

$$\begin{aligned} \forall w^*\in W^*:\quad \left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle }(x)<\left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle }(x_0). \end{aligned}$$

As all scalarizations are convex by assumption, this contradicts (4.1). \(\square \)

Proposition 4.2 ([23, Lemma 4.9]) Let \(F:X\rightrightarrows Y\) be a \(C\) -map with \(x_0\in \mathrm{dom \,}F\). If \(x_0\) is a scalarized weak minimizer, then it satisfies (4.2).

$$\begin{aligned} \begin{array}{cl} &{}F(x_0)+C=Y\;\vee \\ &{}\forall x\in X\, \exists w^*\in W^*:\quad \left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle }(x)\ne -\infty \wedge \left( \left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle } \right) ^\downarrow (x,x_0-x)\le 0. \end{array} \end{aligned}$$
(4.2)

Proof

If \(x_0\) satisfies (w-sc-Min), then either \(F(x_0)+C=Y\) or for every \(x\in X\) there exists a \(w^*\in W^*\) such that \(\left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle }(x_0)\le \left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle }(x)\ne -\infty \) and thus

$$\begin{aligned} \left( \left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle } \right) ^\downarrow (x,x_0-x)\le \left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle }(x_0)- \left( \varphi _{F,w^*} \right) ^\mathrm{\vartriangle }(x)\le 0. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespi, G.P., Rocca, M. & Schrage, C. Variational Inequalities Characterizing Weak Minimality in Set Optimization. J Optim Theory Appl 166, 804–824 (2015). https://doi.org/10.1007/s10957-014-0679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0679-3

Keywords

Mathematics Subject Classification

Navigation