Skip to main content
Log in

Minimal Failure Probability for Ceramic Design Via Shape Control

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the probability of failure for components made of brittle materials under one time application of a load, as introduced by Weibull and Batdorf-Crosse. These models have been applied to the design of ceramic heat shields of space shuttles and to ceramic components of the combustion chamber in gas turbines, for example. In this paper, we introduce the probability of failure as an objective functional in shape optimization. We study the convexity and the lower semi-continuity properties of such objective functionals and prove the existence of optimal shapes in the class of shapes with a uniform cone property. We also shortly comment on shape derivatives and optimality conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We note that in [6] a different set of conditions is referred to as Neumann boundary conditions, hence the term natural boundary conditions in order to avoid confusion.

References

  1. Weibull, E.W.: A statistical theory of the strength of materials. Ingeniors Vetenskaps Akad. Handl. 151, 1–45 (1939)

    Google Scholar 

  2. Allaire, G.: Numerical Analysis and Optimization. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  3. Delfour, M.C., Zolesio, J.P.: Shapes and Geometries. Advances in Design and Control, 2nd edn. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  4. Eppler, K.: Efficient Shape Optimization Algorithms for Elliptic Boundary Value Problems. Habilitationsschrift Technische Universität Chemnitz, Chemnitz (1997)

    Google Scholar 

  5. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization—Theory, Approximation and Computation. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  6. Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization—Shape Sensitivity Analysis. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  7. Batdorf, S.B., Crosse, J.G.: A statistical theory for the fracture of brittle structures subject to nonuniform polyaxial stress. J. Appl. Mech. 41, 459–465 (1974)

    Article  MATH  Google Scholar 

  8. Heger, A.: Bewertung der Zuverlässigkeit mehrachsig belasteter keramischer Bauteile. No. 132 in Fortschrittberichte VDI/18. VDI-Verlag, Düsseldorf (1993)

  9. Nemeth, N.N., Manderscheid, J., Gyekenyeshi, J.: Ceramic analysis and reliability evaluation of structures (cares). Report TP-2916, NASA (1990)

  10. Riesch-Oppermann, H., Brückner-Foit, A., Ziegler, C.: Stau—a general purpose tool for probabilistic reliability assessment of ceramic components under multi axial loading. In: Proceedings of the 13th International Conference on ECF 13, San Sebastian (2000)

  11. Riesch-Oppermann, H., Scherrer-Rudiya, S., Erbacher, T., Kraft, O.: Uncertainty analysis of reliability predictions for brittle fracture. Eng. Fract. Mech. 74, 2933–2942 (2007)

    Article  Google Scholar 

  12. Weil, N.A., Daniel, I.M.: Analysis of fracture probabilities in nonuniformly stressed brittle materials. J. Am. Ceram. Soc. 47, 268–274 (1964)

    Article  Google Scholar 

  13. Ziegler, C.: Bewertung der Zuverlässigkeit keramischer Komponenten bei zeitlich veränderlichen Spannungen unter Hochtemperaturbelastung. No. 238 in Fortschritt-Berichte des VDI, Series 18. VDI-Verlag (1998)

  14. Munz, D., Fett, D.: Mechanische Eigenschaften von Keramik. Springer, Berlin (1989)

    Google Scholar 

  15. Brückner-Foit, A., Hülsmeier, P., Diegele, E., Rettig, U., Hohmann, C.: Simulating the failure behaviour of ceramic components under gas turbine conditions. In: Proceedings of ASME TURBO EXPO 2002 June 3–6, 2002, Amsterdam (2002)

  16. Hülsmeier, P.: Lebensdauervorhersage für keramische Bauteile. Dissertation, Universität Karlsruhe (2004)

  17. Brückner-Foit, A., Fett, T., Munz, D., Schirmer, K.: Discrimination of multiaxiality criteria with the brasilian disk test. J. Eur. Ceram. Soc. 17, 689–696 (1997)

    Article  Google Scholar 

  18. Gambarotta, L., Lagomarsino, S.: A microcrack damage model for brittle materials. Int. J. Solids Struct. 30, 177–198 (1993)

    Article  MATH  Google Scholar 

  19. Fuji, N.: Lower semicontinuity in domain optimization problems. J. Optim. Theory Appl. 59, 407–422 (1988)

    Article  MathSciNet  Google Scholar 

  20. Ciarlet, P.: Mathematical Elasticity—Volume I: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications, vol. 20. North-Holland, Amsterdam (1988)

    Google Scholar 

  21. Gottschalk, H., Schmitz, S.: Optimal reliability in design for fatigue life. SIAM J. Control Optim. (to appear)

  22. Allaire, G., Bonneter, E., Francfort, G., Jouve, G.: Shape optimization by the homogenization method. Numer. Math. 76, 27–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52, 189–219 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Evans, A.G.: A general approach for the statistical analysis of multiaxial fracture. J. Am. Ceram. Soc. 61, 302–308 (1978)

    Article  Google Scholar 

  25. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  26. Gross, D., Seelig, T.: Bruchmechanik, 4th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  27. Kallenberg, O.: Random Measures. Akademie Verlag, Berlin (1975)

    MATH  Google Scholar 

  28. Schmitz, S.: A Local and Probabilistic Model for Low Cycle Fatigue—New Aspects of Structural Analysis. Dissertation Thesis, Universitá della Svizzera Italiana, Lugano (2014)

  29. Escobar, L.A., Meeker, W.Q.: Statistical Methods for Reliability Data. Wiley, New York (1998)

    MATH  Google Scholar 

  30. Nitsche, J.A.: On Korn’s second inequality. RAIRO Anal. Numer. 15, 237–248 (1981)

    MathSciNet  MATH  Google Scholar 

  31. Schulz, V.: A Riemannian view on shape optimization. arXiv:1203.1493 (2012)

  32. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Patricia Hülsmeier and Christoph Ziegeler for making their Ph.D. Theses available to us. We are grateful to Rolf Krause from ICS Lugano for interesting discussions. We also thank the referees for reading the submitted article very carefully and providing many suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Gottschalk.

Additional information

Communicated by Zenon Mroz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolten, M., Gottschalk, H. & Schmitz, S. Minimal Failure Probability for Ceramic Design Via Shape Control. J Optim Theory Appl 166, 983–1001 (2015). https://doi.org/10.1007/s10957-014-0621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0621-8

Keywords

Mathematics Subject Classification

Navigation