Skip to main content
Log in

Simultaneous Perturbation Newton Algorithms for Simulation Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman–Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that, unlike [15, 16], we include more thresholds in deciding the congestion level on a lane in the network.

References

  1. Chong, E.K.P., Ramadge, P.J.: Optimization of queues using an infinitesimal perturbation analysis-based stochastic algorithm with general update times. SIAM J. Control Optim. 31(3), 698–732 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ho, Y.C., Cao, X.R.: Perturbation Analysis of Discrete Event Dynamical Systems. Kluwer, Boston (1991)

    Book  Google Scholar 

  3. Andradóttir, S.: Optimization of the transient and steady-state behavior of discrete event systems. Manag. Sci. 42(5), 717–737 (1996)

    Article  MATH  Google Scholar 

  4. Kiefer, E., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23, 462–466 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  5. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Spall, J.C.: A one-measurement form of simultaneous perturbation stochastic approximation. Automatica 33, 109–112 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhatnagar, S., Fu, M.C., Marcus, S.I., Bhatnagar, S.: Two-timescale algorithms for simulation optimization of hidden Markov models. IIE Trans. 33(3), 245–258 (2001)

    Google Scholar 

  8. Bhatnagar, S., Fu, M.C., Marcus, S.I., Wang, I.: Two-timescale simultaneous perturbation stochastic approximation using deterministic perturbation sequences. ACM Trans. Model. Comput. Simul. 13(2), 180–209 (2003)

    Article  Google Scholar 

  9. Bhatnagar, S., Borkar, V.S.: Multiscale chaotic SPSA and smoothed functional algorithms for simulation optimization. Simulation 79(10), 568–580 (2003)

    Article  Google Scholar 

  10. Bhatnagar, S.: Adaptive Newton-based smoothed functional algorithms for simulation optimization. ACM Trans. Model. Comput. Simul. 18(1), 2:1–2:35 (2007)

    Article  Google Scholar 

  11. Bhatnagar, S., Prasad, H.L., Prashanth, L.A.: Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods. Lecture Notes in Control and Information Sciences. Springer, London (2013)

    Book  Google Scholar 

  12. Fabian, V.: Stochastic approximation. In: Rustagi, J.J. (ed.) Optimizing Methods in Statistics, pp. 439–470. Academic Press, New York (1971)

    Chapter  Google Scholar 

  13. Spall, J.C.: Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans. Autom. Control 45, 1839–1853 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bhatnagar, S.: Adaptive multivariate three-timescale stochastic approximation algorithms for simulation based optimization. ACM Trans. Model. Comput. Simul. 15(1), 74–107 (2005)

    Article  Google Scholar 

  15. Prashanth, L.A., Bhatnagar, S.: Reinforcement learning with function approximation for traffic signal control. IEEE Trans. Intell. Transp. Syst. 12(2), 412–421 (2011)

    Article  Google Scholar 

  16. Prashanth, L.A., Bhatnagar, S.: Threshold tuning using stochastic optimization for graded signal control. IEEE Trans. Veh. Technol. 61(9), 3865–3880 (2012)

    Article  Google Scholar 

  17. Bhatnagar, S., Prashanth, L.A.: Simultaneous perturbation Newton algorithms for simulation optimization. Technical report, Stochastic Systems Lab., IISc, (2013). http://stochastic.csa.iisc.ernet.in/www/research/files/IISc-CSA-SSL-TR-2013-4.pdf

  18. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  19. Zhu, X., Spall, J.C.: A modified second-order SPSA optimization algorithm for finite samples. Int. J. Adapt. Control Signal Process. 16, 397–409 (2002)

    Article  MATH  Google Scholar 

  20. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  21. Borkar, V.S.: Probability Theory: An Advanced Course. Springer, New York (1995)

    Book  MATH  Google Scholar 

  22. Hirsch, M.W.: Convergent activation dynamics in continuous time networks. Neural Netw. 2, 331–349 (1989)

    Article  Google Scholar 

  23. Borkar, V.S., Meyn, S.P.: The O.D.E. method for convergence of stochastic approximation and reinforcement learning. SIAM J. Control Optim. 38(2), 447–469 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kushner, H.J., Clark, D.S.: Stochastic Approximation Methods for Constrained and Unconstrained Systems. Springer, New York (1978)

    Book  Google Scholar 

  25. Lasalle, J.P., Lefschetz, S.: Stability by Liapunov’s Direct Method with Applications. Academic Press, New York (1961)

    Google Scholar 

  26. Kushner, H.J., Yin, G.G.: Stochastic Approximation Algorithms and Applications. Springer, New York (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalabh Bhatnagar.

Additional information

Communicated by Ilio Galligani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, S., Prashanth, L.A. Simultaneous Perturbation Newton Algorithms for Simulation Optimization. J Optim Theory Appl 164, 621–643 (2015). https://doi.org/10.1007/s10957-013-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0507-1

Keywords

Navigation