Skip to main content
Log in

Game Analysis of Investment in a Group with Stickiness

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the investment in a group with stickiness. A group investment game is constructed. By analyzing the best response of each player, the equilibria are presented. Furthermore, the convergence region of each equilibrium is outlined, and the sensitivity analysis of the region to parameters is explored. The game with two players is given to illustrate the convergence region of each equilibrium. The explanation and illustration of the results are summarized. The findings indicate that a successful investment usually occurs in a group with “tolerance”, “open-sharing”, “efficiency”, “sensitivity”, and with large members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Deets, M.K., George, C.H.: Variance preferences and variance shifts in group investment decisions. Organ. Behav. Hum. Perform. 5, 378–386 (1970)

    Article  Google Scholar 

  2. Florack, A., Juliane, H.: Regulatory focus and investment decisions in small groups. J. Exp. Soc. Psychol. 43, 626–632 (2007)

    Article  Google Scholar 

  3. Cheng, P., Chiou, W.: Framing effects in group investment decision making: role of group polarization. Psychol. Rep. 102, 283–292 (2008)

    Article  Google Scholar 

  4. Van de Kragt, A.J.C., Orbell, J.M., Dawes, R.M.: The minimal contributing set as a solution to public goods problems. Am. Polit. Sci. Rev. 77, 112–122 (1983)

    Article  Google Scholar 

  5. Van Vugt, M., De Cremer, D.: Leadership in social dilemmas: the effects of group identification on collective actions to provide public goods. J. Pers. Soc. Psychol. 76, 587–599 (1999)

    Article  Google Scholar 

  6. Van Vugt, M., De Cremer, D.: Leader endorsement in social dilemmas: comparing the instrumental and relational perspectives. Eur. Rev. Soc. Psychol. 13, 155–184 (2003)

    Article  Google Scholar 

  7. Nash, J.: Non-cooperative game. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sherif, M.: The Psychology of Social Norms. Harpe, New York (1936)

    Google Scholar 

  9. Asch, S.E.: Opinions and social pressure. Sci. Am. 193, 31–35 (1951)

    Article  Google Scholar 

  10. Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, London (1991)

    Google Scholar 

  11. Matsui, A.: Best response dynamics and socially stable strategies. J. Econ. Theory 57, 343–362 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. The MIT Press, London (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Additional information

Communicated by Irinel Chiril Dragan.

This work was partially supported by the Natural Science Foundation of Zhejiang University of Technology (No. 2011XY006), National Natural Science Foundation of China (Grant No. 70971118) and Foundation of Zhejiang Educational Committee (No. Y201121675).

Appendices

Appendix A: Proof of Theorem 2.2

Without any loss of generality, consider player iN. Then \(\overline{x_{-i}^{*}}=1\geq \frac{d-1}{n-1}\). It follows from (12) that \(\mathrm{BR}_{i}(\boldsymbol{x}^{*}_{-i})= \mathrm{BR}_{i\_\mathrm{B}}(\boldsymbol{x}^{*}_{-i})\) if \(\overline{x_{-i}^{*}}< \frac{d}{n-1}\), and \(\mathrm{BR}_{i}(\boldsymbol{x}^{*}_{-i})=\mathrm{BR}_{i\_\mathrm{A}}(\boldsymbol{x}^{*}_{-i})\) if \(\overline{x_{-i}^{*}}\geq \frac{d}{n-1}\).

In the case \(\overline{x_{-i}^{*}}< \frac{d}{n-1}\), we have \(u_{i}(\mathrm{BR}_{i\_\mathrm{B1}}(\boldsymbol{x}^{*}_{-i}),\boldsymbol{x}^{*}_{-i})\leq 0\), \(\mathrm{BR}_{i\_\mathrm{B2}}(\boldsymbol{x}^{*}_{-i})=1\) and \(u_{i}(1,\boldsymbol{x}^{*}_{-i})=n\alpha k-1\geq 0\). Therefore, it follows from (10) that \(\mathrm{BR}_{i\_\mathrm{B}}(\boldsymbol{x}^{*}_{-i})=\mathrm{BR}_{i\_\mathrm{B2}}(\boldsymbol{x}^{*}_{-i})=1\). Thus,

$$u_i\bigl(1,\boldsymbol{x}^*_{-i}\bigr)\geq u_i \bigl(x_i,\boldsymbol{x}^*_{-i}\bigr), \quad \forall x_i\in[0,1] \mbox{ and }\overline{x_{-i}^*}< \frac{d}{n-1}. $$

In the case \(\overline{x_{-i}^{*}}\geq \frac{d}{n-1}\), we have \(\mathrm{BR}_{i\_\mathrm{A}}(\boldsymbol{x}^{*}_{-i})=\min \{\frac{\alpha k-1}{2\beta}+\overline{\boldsymbol{x}^{*}_{-i}}, 1 \}=1\). Thus,

$$u_i \bigl(1,\boldsymbol{x}^*_{-i}\bigr)\geq u_i \bigl(x_i,\boldsymbol{x}^*_{-i}\bigr), \quad \forall x_i\in[0,1] \mbox{ and }\overline{x_{-i}^*}\geq \frac{d}{n-1}. $$

To sum up, \(u_{i}(1,\boldsymbol{x}^{*}_{-i})\geq u_{i}(x_{i},\boldsymbol{x}^{*}_{-i}),\ \forall x_{i}\in[0,1]\).

In conclusion, the strategies \((x^{*}_{1},x^{*}_{2},\ldots,x^{*}_{n})\) are a Nash equilibrium, where for any iN, \(x^{*}_{i}=1\).

Appendix B: Proof of Theorem 2.3

Without any loss of generality, consider player iN. Since d>1, then \(\overline{x_{-i}^{*}}=0<\frac{d-1}{n-1}\). It follows from (12) that \(\mathrm{BR}_{i}(\boldsymbol{x}^{*}_{-i})=\mathrm{BR}_{i\_\mathrm{C}}(\boldsymbol{x}^{*}_{-i})= \max \{\overline{\boldsymbol{x}_{-i}}-\frac{1}{2\beta}, 0 \}=0\). That is,

$$u_i \bigl(0,\boldsymbol{x}^*_{-i}\bigr)\geq u_i \bigl(x_i,\boldsymbol{x}^*_{-i}\bigr),\quad \forall x_i\in[0,1]. $$

In conclusion, the strategies \((x^{*}_{1},x^{*}_{2},\ldots,x^{*}_{n})\) are a Nash equilibrium, where for any iN, \(x^{*}_{i}=0\).

Appendix C: Proof of Theorem 2.4

For any \(\boldsymbol{x}\in S_{\mathbf{1}}^{(1)}\), we have \(\overline{\boldsymbol{x}_{-i}}\geq \frac{d}{n-1}\). Let x (0)=x, x (t) be given in Definition 2.1, and \(K^{(t)}:= \{i\mid \mathrm{BR}_{i} (\boldsymbol{x}_{-i}^{(t-1)} )<1 \}\). If iK (1), then \(x_{i}^{(1)}= \overline{\boldsymbol{x}_{-i}^{(0)}}+\frac{\alpha k-1}{2\beta}\geq \frac{d}{n-1}+\frac{\alpha k-1}{2\beta}\). Thus, for any iN, we have

$$\overline{\boldsymbol{x}_{-i}^{(1)}}=\frac{1}{n-1}\sum_{j=1,j\neq i}^n x_{j}^{(1)}\geq \frac{d}{n-1}+\frac{|K^{(1)}\backslash\{i\}|}{n-1}\frac{\alpha k-1}{2\beta}, $$

where |⋅| measures the number of members of a set, K (1)∖{i} denotes the set K (1) excluding the member i. Iteratively, we have

$$ \displaystyle \overline{ \boldsymbol{x}_{-i}^{(t)}}\geq \frac{d}{n-1}+\frac{\sum_{l=1}^t|K^{(l)}\backslash\{i\}|}{n-1} \frac{\alpha k-1}{2\beta}. $$
(17)

Therefore, when |K (t)|≥2, for any iN, the lower bound of \(\overline{\boldsymbol{x}_{-i}^{(t)}}\) is increasing with respect to t, and the increasing step Δ satisfies \(\Delta\geq \frac{\alpha k-1}{2(n-1)\beta}>0\). Since \(\overline{\boldsymbol{x}_{-i}^{(t)}}\leq 1\) holds for all t>0, therefore, there exists a T 1, when t>T 1, we have |K (t)|<2. Otherwise, there exists an i such that \(\overline{\boldsymbol{x}_{-i}^{(t)}}> 1\), which contradicts \(\overline{\boldsymbol{x}_{-i}^{(t)}}\leq 1\). When t>T 1 and |K (t)|=1, suppose K (t)={i}, it follows from (17) that the lower bound of \(\overline{\boldsymbol{x}_{-i}^{(t)}}\) is unchanged, while, for any jN and ji, the lower bound of \(\overline{\boldsymbol{x}_{-j}^{(t)}}\) is increasing. Thus, there exists a T 2, when t>T 2, |K (t)|=0, i.e., K (t)=ϕ, meaning that for any iN, \(x_{i}^{(t)}=1\). Therefore, xD(1). Thus, \(S_{\mathbf{1}}^{(1)}\subseteq D({\mathbf{1}})\).

Similarly, we have \(S_{\mathbf{0}}^{(1)}\subseteq D({\mathbf{0}})\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Deng, L. Game Analysis of Investment in a Group with Stickiness. J Optim Theory Appl 155, 1047–1059 (2012). https://doi.org/10.1007/s10957-012-0108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0108-4

Keywords

Navigation