Skip to main content
Log in

Equations for the Missing Boundary Values in the Hamiltonian Formulation of Optimal Control Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Partial differential equations for the unknown final state and initial costate arising in the Hamiltonian formulation of regular optimal control problems with a quadratic final penalty are found. It is shown that the missing boundary conditions for Hamilton’s canonical ordinary differential equations satisfy a system of first-order quasilinear vector partial differential equations (PDEs), when the functional dependence of the H-optimal control in phase-space variables is explicitly known. Their solutions are computed in the context of nonlinear systems with ℝn-valued states. No special restrictions are imposed on the form of the Lagrangian cost term. Having calculated the initial values of the costates, the optimal control can then be constructed from on-line integration of the corresponding 2n-dimensional Hamilton ordinary differential equations (ODEs). The off-line procedure requires finding two auxiliary n×n matrices that generalize those appearing in the solution of the differential Riccati equation (DRE) associated with the linear-quadratic regulator (LQR) problem. In all equations, the independent variables are the finite time-horizon duration T and the final-penalty matrix coefficient S, so their solutions give information on a whole two-parameter family of control problems, which can be used for design purposes. The mathematical treatment takes advantage from the symplectic structure of the Hamiltonian formalism, which allows one to reformulate Bellman’s conjectures concerning the “invariant-embedding” methodology for two-point boundary-value problems. Results for LQR problems are tested against solutions of the associated differential Riccati equation, and the attributes of the two approaches are illustrated and discussed. Also, nonlinear problems are numerically solved and compared against those obtained by using shooting techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    MATH  Google Scholar 

  2. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  3. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  4. Bernhard, P.: Introducción a la teoría de control óptimo. Cuaderno Nro. 4, Instituto de Matemática “Beppo Levi”, Rosario, Argentina (1972)

  5. Sontag, E.D.: Mathematical Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  6. Costanza, V., Neuman, C.E.: Optim. Control Appl. Methods 27, 41–60 (2006)

    Article  MathSciNet  Google Scholar 

  7. Costanza, V.: Lat. Am. Appl. Res. 35(4), 327–335 (2005)

    Google Scholar 

  8. Pardalos, P.M., Yatsenko, V.: Optimization and Control of Bilinear Systems. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  9. Costanza, V.: Optim. Control Appl. Methods 29, 225–242 (2008)

    Article  MathSciNet  Google Scholar 

  10. Costanza, V., Rivadeneira, P.S.: Automatica 44(9), 2427–2434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goh, C.J., Teo, K.L.: Automatica 24(1), 3–18 (1998)

    Article  MathSciNet  Google Scholar 

  12. Chinchuluun, A., Pardalos, P., Enkhbat, R., Tseveendorj, I.: Optimization and Control: Theory and Applications. Springer Optimization and Its Applications, vol. 39. Springer, New York (2010)

    MATH  Google Scholar 

  13. Costanza, V.: Proceedings of the XIII Workshop on Information Processing and Control, Rosario-Argentina (2009)

    Google Scholar 

  14. Bellman, R., Kalaba, R.: Q. Appl. Math. XXI, 166–168 (1963)

    MathSciNet  Google Scholar 

  15. Isidori, A.: Nonlinear Control Systems II. Springer, Berlin (1999)

    MATH  Google Scholar 

  16. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  17. Jacobson, N.: Basic Algebra I. Freeman, San Francisco (1974)

    MATH  Google Scholar 

  18. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  19. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  20. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  21. Zenchuk, A.I., Santini, P.M.: Dressing method based on homogeneous Fredholm equation: quasilinear PDEs in multidimensions. arXiv:nlin/0701031 (2007)

  22. Rao, A.V., Mease, K.D.: Automatica 35, 633–642 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Costanza, V., Troparevsky, M.I., Rivadeneira, P.S.: Proceedings of the XIII Workshop on Information Processing and Control, Rosario-Argentina (2009)

    Google Scholar 

  24. Costanza, V.: Optim. Control Appl. Methods 28, 209–228 (2007)

    Article  MathSciNet  Google Scholar 

  25. Ierapetritou, M.G., Pistikopoulos, E.N.: Comput. Chem. Eng. 19, 627–632 (1995)

    Article  Google Scholar 

  26. Costanza, V., Rivadeneira, P.S.: Proceedings of the XXI Congreso Argentino de Control Automático, Buenos Aires-Argentina, paper A001, Sept 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Costanza.

Additional information

Communicated by P.M. Pardalos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costanza, V., Rivadeneira, P.S. & Spies, R.D. Equations for the Missing Boundary Values in the Hamiltonian Formulation of Optimal Control Problems. J Optim Theory Appl 149, 26–46 (2011). https://doi.org/10.1007/s10957-010-9773-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9773-3

Keywords

Navigation