Skip to main content
Log in

Feasible Method for Generalized Semi-Infinite Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we analyze the outer approximation property of the algorithm for generalized semi-infinite programming from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). A simple bound on the regularization error is found and used to formulate a feasible numerical method for generalized semi-infinite programming with convex lower-level problems. That is, all iterates of the numerical method are feasible points of the original optimization problem. The new method has the same computational cost as the original algorithm from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). We also discuss the merits of this approach for the adaptive convexification algorithm, a feasible point method for standard semi-infinite programming from Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42, 769–788 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18, 1187–1208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Stein, O.: Bi-level Strategies in Semi-infinite Programming. Kluwer Academic, Boston (2003)

    MATH  Google Scholar 

  4. Guerra Vazquez, F., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math. (2007). doi:10.1016/j.cam.2007.02.012

    Google Scholar 

  5. Stein, O.: A semi-infinite approach to design centering. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings, pp. 209–228. Springer, Berlin (2006)

    Chapter  Google Scholar 

  6. Winterfeld, A.: Large-scale semi-infinite optimization applied to industrial gemstone cutting. PhD thesis, TU Kaiserslautern (2007)

  7. Graettinger, T.J., Krogh, B.H.: The acceleration radius: a global performance measure for robotic manipulators. IEEE J. Robot. Autom. 4, 60–69 (1988)

    Article  Google Scholar 

  8. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  9. Hogan, W.W.: Directional derivatives for extremal value functions with applications to the completely convex case. Oper. Res. 21, 188–209 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhattacharjee, B., Lemonidis, P., Green, W.H., Barton, P.I.: Global solution of semi-infinite programs. Math. Program. 103(2), 283–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142, 444–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Kluwer Academic, Boston (1997)

    MATH  Google Scholar 

  13. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52(3), 333–359 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pieper, H.: Algorithms for mathematical programs with equilibrium constraints with applications to deregulated electricity markets. PhD thesis, Stanford University (2001)

  16. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jongen, H.Th., Weber, G.-W.: Nonlinear optimization: Characterization of structural stability. J. Global Optim. 1, 47–64 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fletcher, R., Leyffer, S.: Numerical experience with solving mpecs as nlps. Technical Report NA/210, University of Dundee (2002)

  19. Chen, C., Mangasarian, O.L.: Smoothing methods for convex inequalities and linear complementarity problems. Math. Program. 71(1), 51–69 (1995)

    Article  MathSciNet  Google Scholar 

  20. Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85(1), 107–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, H., Ralph, D.: Smooth SQP methods for mathematical programs with nonlinear complementarity constraints. SIAM J. Optim. 10(3), 779–808 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, G.-H., Fukushima, M.: A modified relaxation scheme for mathematical programs with complementarity constraints. Ann. Oper. Res. 133(22), 63–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, X.Q., Huang, X.X.: Lower-order penalty methods for mathematical programs with complementarity constraints. Optim. Methods Softw. 19(6), 693–720 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, H., Ralph, D.: Extension of quasi-newton methods to mathematical programs with complementarity constraints. Comput. Optim. Appl. 25(1–3), 123–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stein, O.: Lifting mathematical programs with complementarity constraints. Math. Program. (2010, to appear)

  26. Ferris, M.C., Kanzow, C.: Complementarity and related problems: A survey. In: Handbook of Applied Optimization, pp. 514–530 (2002)

  27. Sun, D., Qi, L.: On NCP-functions. Comput. Optim. Appl. 13, 201–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stein, O.: On Karush-Kuhn-Tucker points for a smoothing method in semi-infinite optimization. J. Comput. Math. 24, 719–732 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Levitin, E., Tichatschke, R.: A branch-and-bound approach for solving a class of generalized semi-infinite programming problems. J. Global Optim. 13, 299–315 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley, New York (1993)

    MATH  Google Scholar 

  31. Den Hertog, D., Roos, C., Terlaky, T.: On the classical logarithmic barrier function method for a class of smooth convex programming problems. J. Optim. Theory Appl. 73(1), 1–25 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Izmailov, A.F., Solodov, M.V.: Smoothing methods for convex inequalities and linear complementarity problems. Lect. Not. Econ. Math. Syst. 563, 133–145 (2006)

    Article  MathSciNet  Google Scholar 

  33. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs—I: Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998)

    Article  Google Scholar 

  34. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs—II: Implementation and computational results. Comput. Chem. Eng. 22, 1159–1179 (1998)

    Article  Google Scholar 

  35. Floudas, C.A.: Deterministic Global Optimization, Theory, Methods and Applications. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  36. Stein, O.: Adaptive convexification in semi-infinite optimization. In: Pardalos, P.M., Floudas, C.A. (eds.) Encyclopedia of Optimization, Part 1, 2nd edn., pp. 13–19. Springer, Berlin (2009)

    Google Scholar 

  37. Goberna, M.A., Lopez, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, O., Winterfeld, A. Feasible Method for Generalized Semi-Infinite Programming. J Optim Theory Appl 146, 419–443 (2010). https://doi.org/10.1007/s10957-010-9674-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9674-5

Keywords

Navigation