Skip to main content
Log in

Second-Order Analysis of Penalty Function

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

By exploiting second-order analysis, in particular sufficient and representation conditions, it is shown how to achieve global exact penalty functions for constrained optimization. Some remarks are made on how to continue such an investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Necessary and sufficient condition for a penalty method to be exact. Math. Program. 9(1), 87–99 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Han, S.P., Mangasarian, O.L.: Exact penalty functions in nonlinear programming. Math. Program. 17, 251–269 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, New York (1996)

    Google Scholar 

  4. Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    Google Scholar 

  5. Giannessi, F.: Constrained Optimization and Image Space Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  6. Rubinov, A.M., Glover, B.M., Yang, X.Q.: Decreasing functions with applications to penalization. SIAM J. Optim. 10(1), 289–313 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968–998 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27(6), 1333–1360 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lasserre, J.B.: Exact penalty functions and Lagrange multipliers. RAIRO Automat. 14(2), 117–125 (1980)

    MathSciNet  MATH  Google Scholar 

  10. Pietrzykowski, T.: An exact potential method for constrained maxima. SIAM J. Numer. Anal. 6, 299–304 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zangwill, W.I.: Nonlinear programming via penalty functions. Manag. Sci. 13, 344–358 (1967)

    Article  MathSciNet  Google Scholar 

  12. Charalambous, C.: A lower bound for the controlling parameters of the exact penalty functions. Math. Program. 15(3), 278–290 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiacco, A., McCormick, S.T.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  14. Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester/New York (1987)

    MATH  Google Scholar 

  15. Mangasarian, O.L.: Sufficiency of exact penalty minimization. SIAM J. Control Optim. 23(1), 30–37 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rosenberg, E.: Exact penalty functions and stability in locally Lipschitz programming. Math. Program. 30(3), 340–356 (1984)

    Article  MATH  Google Scholar 

  17. Burke, J.V.: Calmness and exact penalization. SIAM J. Control Optim. 29(2), 493–497 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  19. Rubinov, A.M., Yang, X.Q.: Lagrange-type Functions in Constrained Non-Convex Optimization. Kluwer Academic, Amsterdam (2003)

    MATH  Google Scholar 

  20. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum. III. Second-order conditions and augmented duality. SIAM J. Control Optim. 17(2), 266–288 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Burke, J.V.: Second-order necessary and sufficient conditions for convex composite NDO. Math. Program. 38(3), 287–302 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Burke, J.V., Poliquin, R.A.: Optimality conditions for non-finite valued convex composite functions. Math. Program. 57(1), 103–120 (1992)

    Article  MathSciNet  Google Scholar 

  23. Jeyakumar, V., Yang, X.Q.: Convex composite minimization with C 1,1 functions. J. Optim. Theory Appl. 86, 631–648 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Poliquin, R.A., Rockafellar, R.T.: Amenable functions in optimization. In: Nonsmooth Optimization: Methods and Applications, Erice, 1991, pp. 338–353. Gordon and Breach, Montreux (1992)

    Google Scholar 

  25. Rockafellar, R.T.: First- and second-order epi-differentiability in nonlinear programming. Trans. Am. Math. Soc. 307(1), 75–108 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Bonnans, J.F.: Directional derivatives of optimal solutions in smooth nonlinear programming. J. Optim. Theory Appl. 73(1), 27–45 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bonnans, J.F., Ioffe, A.D.: Second-order sufficiency and quadratic growth for nonisolated minima. Math. Oper. Res. 20(4), 801–817 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Charnes, A., Cooper, W.W., Henderson, A.: An Introduction to Linear Programming. Wiley/Chapman & Hall, New York/London (1953)

    MATH  Google Scholar 

  29. Eremin, I.I.: The penalty method in convex programming. Sov. Math. Dokl. 8, 459–462 (1966)

    Google Scholar 

  30. Bazaraa, M.S., Goode, J.J.: Sufficient conditions for a globally exact penalty function without convexity. Optimality and stability in mathematical programming. Math. Program. Stud. 19, 1–15 (1982)

    MathSciNet  Google Scholar 

  31. Yang, X.Q.: Second-order global optimality conditions for convex composite optimization. Math. Program. 81, 327–347 (1998)

    Google Scholar 

  32. Stern, R.J., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5(2), 286–313 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bertsekas, D.P., Ozdaglar, A.E.: Pseudonormality and a Lagrange multiplier theory for constrained optimization. J. Optim. Theory Appl. 114, 287–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gauvin, J.: A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming. Math. Program. 12(1), 136–138 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Auslender, A.: Penalty methods for computing points that satisfy second-order necessary conditions. Math. Program. 17(2), 229–238 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, Z.Y., Bai, F.S., Yang, X.Q., Zhang, L.S.: An exact lower order penalty function and its smoothing in nonlinear programming. Optimization 53(1), 51–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, X.X., Yang, X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. Ser. A 72(1), 51–63 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Yang.

Additional information

Communicated by F. Giannessi.

X.Q. Yang was supported by grants from the Research Grants Council of Hong Kong (PolyU 5334/08E) and the Natural Science Foundation of China (10831009). Y.Y. Zhou was supported by grants from the Natural Science Foundation of China and the Jiangsu Education Committee of China (08KJB110009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X.Q., Zhou, Y.Y. Second-Order Analysis of Penalty Function. J Optim Theory Appl 146, 445–461 (2010). https://doi.org/10.1007/s10957-010-9666-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9666-5

Keywords

Navigation