Skip to main content
Log in

Connection between an Exactly Solvable Stochastic Optimal Control Problem and a Nonlinear Reaction-Diffusion Equation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present an exactly soluble optimal stochastic control problem involving a diffusive two-states random evolution process and connect it to a nonlinear reaction-diffusion type of equation by using the technique of logarithmic transformations. The work generalizes the recently established connection between the non-linear Boltzmann-like equations introduced by Ruijgrok and Wu and the optimal control of a two-states random evolution process. In the sense of this generalization, the nonlinear reaction-diffusion equation is identified as the natural diffusive generalization of the Ruijgrok–Wu and Boltzmann model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hongler, M.O., Soner, H.M., Streit, L.: Stochastic control for a class of random evolution models. Appl. Math. Optim. 49, 113–121 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Fleming, W.H.: Exit probabilities and optimal stochastic control. Appl. Math. Optim. 4, 329–346 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Holland, C.J.: A new energy characterization of the smallest eigenvalue of the Schrödinger equation. Commun. Pure Appl. Math. 30, 201–230 (1950)

    MathSciNet  Google Scholar 

  4. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)

    MATH  Google Scholar 

  5. Hopf, E.: The part. diff. equation u t +uu x =μ u xx . Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hongler, M.-O., Lima, R.: A solvable nonlinear reaction-diffusion model. Phys. Lett. A 198, 100–104 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Masoliver, J., Lindenberg, K., Weiss, G.H.: A continuous-time generalization of the persistent random walk. Physica A 157(2), 891–898 (1989)

    Article  MathSciNet  Google Scholar 

  8. Blanchard, P., Hongler, M.-O.: Probabilistic solution of high order partial differential equations. Phys. Lett. A 180, 225 (1993)

    Article  MathSciNet  Google Scholar 

  9. Ruijgrok, Th.W., Wu, T.T.: A completely solvable model of the nonlinear Boltzmann equation. Physica A 113, 401–416 (1982)

    Article  MathSciNet  Google Scholar 

  10. Hongler, M.-O., Streit, L.: A probabilistic connection between the Burgers and a discrete Boltzmann equation. Europhys. Lett. 12(3), 193–197 (1990)

    Article  Google Scholar 

  11. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35(6), 2405–2439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gabetta, E., Perthame, B.: Scaling limits for the Ruijgrok–Wu model of the Boltzmann equation. Math. Methods Appl. Sci. 24, 949–967 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Burgers, J.: A Mathematical Model Illustrating the Theory of Turbulence. Academic Press, New York (1948)

    Google Scholar 

  14. Hongler, M.-O., Filliger, R.: Mesoscopic derivation of a fundamental diagram of one-lane traffic. Phys. Lett. 301, 597–602 (2002)

    MathSciNet  Google Scholar 

  15. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Gundleheren der Mathematischen Wissenschaften, vol. 260. Springer, New York (1984)

    Google Scholar 

  16. Ito, H.: Derivation of the Onsager–Machlup function by a minimisation of the Kullback–Leibler entropy. J. Phys. A: Math. Gen. 14, 385–388 (1981)

    Article  Google Scholar 

  17. Dai Pra, P.: A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 23, 313–329 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pavon, M.: Stochastic control and nonequilibrium thermodynamical systems. Appl. Math. Optim. 19(1), 187–202 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dupuis, P., Ellis, R.S.: A weak Convergence Approach to the Theory of Large Deviations. Wiley Series in Probability and Statistics. Wiley, New York (1997)

    MATH  Google Scholar 

  20. Dupuis, P., Ellis, R.S.: The large deviation principle for a general class of queuing systems I. Trans. Am. Math. Soc. 347(8), 2689–2751 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Privault, N., Zambrini, J.C.: Markovian bridges and reversible diffusion processes with jumps. Ann. Inst. Henri Poincaré 40, 599–633 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pinsky, M.A.: Lectures on Random Evolution. World Scientific, Singapore (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Filliger.

Additional information

Communicated by R. Glowinski.

This work was partially supported by Fonds National pour la Recherche Suisse and Fundaçao para a Ciência e a Tecnologica FCT, FEDER/POCTI-SFA-1-219, Portugal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filliger, R., Hongler, MO. & Streit, L. Connection between an Exactly Solvable Stochastic Optimal Control Problem and a Nonlinear Reaction-Diffusion Equation. J Optim Theory Appl 137, 497–505 (2008). https://doi.org/10.1007/s10957-007-9346-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9346-2

Keywords

Navigation