Introduction

Biology is a vital subject in the Natural Sciences and enables learners to understand the mechanisms of living organisms and their practical applications for humans (Agaba, 2013). Therefore, Biology instruction requires interactive, learner-centered instructional methods like the problem-solving method with metacognitive scaffolding (PSMMS), which foster students to develop critical thinking, problem-solving, metacognitive, and scientific process skills (Al Azmy & Alebous, 2020; Inel & Balim, 2010) and help them make informed decisions regarding health and the environment, thereby advancing scientific knowledge (Aurah et al., 2011).

Although the focus is on students acquiring scientific knowledge and higher-order thinking skills (Senyigit, 2021), research revealed gaps in implementing the PSMMS in Biology, mainly due to the teachers’ limited experience in learner-centered methods (Agena, 2010; Beyessa, 2014), poor enhancement practices (MoE, 2019), tendency to use conventional problem-solving approaches (Aurah et al., 2011), and limited understanding of the roles of metacognition in instructional processes (Cimer, 2012). On the other hand, there is limited study on the importance of metacognitive instruction in scaffolding the problem-solving method in Biology, although it has a significant impact on students’ performance in mathematics and logical reasoning (Guner & Erbay, 2021).

In addition, metacognitive instructional strategies in primary school sciences and the contributions of metacognitive instructional intervention in developing countries are other areas where limited research has been done (Sbhatu, 2006). These challenges offer a study ground for investigating the intervention of metacognitive instructional methods in secondary schools, focusing on the problem-solving method in Biology. This study, therefore, aims to answer the research question, “How can context analysis be used to design a context-driven PSMMS and suggest PSMMS instructional guidelines to enhance students’ effective Biology learning?”

Theoretical Background

The Problem-Solving Method

The problem-solving method is a learner-centered approach that focuses on identifying, investigating, and solving problems (Ahmady & Nakhostin-Ruhi, 2014). The problem-solving method in Biology promotes advanced and critical thinking skills, enhancing students’ attitudes, academic performance, and subject understanding (Albay, 2019; Khaparde, 2019). Research has shown that students who learn using the problem-solving method outperform those who are taught conventionally (Nnorom, 2019). Studies have discussed that the problem-solving method encourages experimentation or learning through trial-and-error and also facilitates a constructivist learning environment by encouraging brainstorming and inquiry (e.g., Ishaku, 2015).

Metacognition

Metacognition, introduced by John Flavell in 1976, refers to an individual’s awareness, critical thinking, reflective judgment, and control of cognitive processes and strategies (Tachie, 2019). It consists of two main components, namely metacognitive knowledge and metacognitive regulation (Lai, 2011). Metacognitive knowledge involves understanding one’s own thinking, influencing performance, and effective use of methods through declarative, procedural, and conditional knowledge (Schraw et al., 2006; Sperling et al., 2004), while metacognitive regulation is about controlling thought processes and monitoring cognition, which involves planning, implementing, monitoring, and evaluating strategies (Aaltonen & Ikavalko, 2002; Zumbrunn et al., 2011).

Metacognitive instructional strategies are used to enhance learners’ effectiveness and support their learning process during the stages of forethought, performance, and self-reflection (Okoro & Chukwudi, 2011; Zimmerman, 2008). Therefore, metacognitive scaffolding, as described by Zimmerman (2008), is important in classroom interventions because it promotes problem-solving processes and supports metacognitive activities. According to Sbhatu (2006), understanding metacognitive processes and methods is fundamental for complex problem-solving tasks. Metacognitive functions are categorized based on the phases of the problem-solving method, including problem recognition, presentation, planning, execution, and evaluation (Kapa, 2001).

PSMMS in the Face of Globalization and Twenty-First Century Advancements

In the twenty-first century, societies rely on scientific and technological advances, and promoting scientific literacy is crucial for their integration into interactive learning environments (Chu et al., 2017). Studies suggest that science, technology, engineering, and mathematics (STEM) education promotes critical thinking, creativity, and problem-solving skills (Widya et al., 2019). Therefore, teachers should adopt a learning science and learner-centered approach and focus on higher-order thinking skills and problem-based tasks (Darling-Hammond et al., 2020; Nariman, 2014).

The implementation of metacognitive strategies as a scaffold system for the problem-solving method, which simultaneously fosters the development of higher-order skills in their Biology learning, helps students advance in the age of globalization and the twenty-first century. According to Chu et al. (2017), twenty-first century skills are classified into four categories, such as ways of thinking, ways of working, tools for working, and ways of living in an advanced world. Therefore, studies suggest that teachers can help students develop twenty-first century skills and influence learning through metacognition, thereby promoting self-directed learning (Stehle & Peters-Burton, 2019; Tosun & Senocak, 2013).

The Problem-Solving Method and Metacognition in Biology Instruction in Ethiopia

The National Education and Training Policy emphasizes the importance of education, particularly in science and technology, in improving problem-solving skills, cultural development, and environmental conservation for holistic development (ETP, 1994). Similarly, the 2009 Ethiopian Education Curriculum Framework Document highlights higher-order skills as key competencies and promotes the application, analysis, synthesis, evaluation, and innovation of knowledge for the twenty-first century (MoE, 2009). Whereas, a third revision of the curriculum is needed to promote science and technology studies with an emphasis on advanced cognitive skills and a shift from teacher-centered to learner-centered instructional methods (MoE, 2020).

The 2009 curriculum framework also places a strong emphasis on Biology as a life science, promoting understanding of self and living things while encouraging critical thinking and problem-solving. Biology lessons that integrate the problem-solving method can enhance students’ academic performance and understanding of the subject (Agaba, 2013). However, the Ethiopian education system faces challenges due to limited instructional resources, poor instructional methods, and a lack of experience in practical (hands-on) activities (Eshete, 2001; ETP, 1994; MoE, 2005; Negash, 2006). On the other hand, teachers’ inability to demonstrate effective instructional practices may contribute to low academic performance (Ganyaupfu, 2013; Umar, 2011).

Challenges in Implementing the PSMMS in Biology Instruction

Metacognitive processes are crucial for guiding learners in problem-solving activities (Sbhatu, 2006), but assessing them can be challenging due to their covert nature (Georghiades, 2000). Just like other areas of study, implementing metacognitive scaffolding of the problem-solving method in Biology instruction faces challenges such as complex learning, outdated skills, self-study, overloaded curricula, and limited resources, as shown in Table 1.

Table 1 Challenging factors in implementing the PSMMS instructional strategy in Biology

Context Analysis in the Design of the PSMMS for Biology Instruction

Biology lessons are designed for different contexts and consider factors such as the learning environment, prior knowledge, background information, and cultural orientation (Reich et al., 2006). For this study, the three domains of context analysis (learners, learning, and learning task contexts) of Smith and Ragan’s (2005) instructional design model (as cited in Getenet, 2020) are adapted to design a context-based PSMMS method to generate authentic examples, strong scenarios, and instructional content, as shown in Table 2.

Table 2 Aspects of context analysis and guiding issues

Methods

Research Design

The study analyzed the learning context, including the available instructional resources and facilities in selected schools in Shambu Town, considering teachers’ and students’ perspectives using a mixed-methods research design (Creswell, 2009; Creswell & Creswell, 2018).

Study Participants

The study was conducted in public secondary schools in Shambu Town. Two schools, namely Shambu Secondary and Preparatory School (ShSPS) and Shambu Secondary School (ShSS), were selected using purposive sampling. Additionally, two Natural Sciences grade 11 sections, one from each school, were selected for instructional intervention based on feedback from context analysis to design an instructional approach, specifically the PSMMS in this study. Thus, all 12 Biology teachers and 80 eleventh-grade students participated in this study (see Table 4).

Data Collection Instruments and Procedure

To analyze the contexts to design a context-driven PSMMS for Biology instruction, data were collected using interviews, observations, and a questionnaire. Interviews were conducted to get insights from teachers, while observations were used to assess classroom instructions and instructional resources. Likewise, a questionnaire was administered to students to collect quantitative data on their opinions about the use of PSMMS in Biology instruction. The questionnaire, which was adapted from existing literature (Kallio et al., 2017; Rahmawati et al., 2018), was initially produced in English and subsequently translated into local language (Afan Oromo) with the help of both software (English to Oromo translator software) and experts. The questionnaire was pilot-tested on a sample of 40 students (22 males and 18 females) to identify any deficiencies in the measuring instrument, and responses were rated on a five-point Likert scale ranging from strongly agree (N = 5) to strongly disagree (N = 1). The reliability score of the questionnaire was determined to be 0.895, which is at a good level of acceptability.

In this design-based research (DBR) to design an instructional approach for context-driven PSMMS, the data collection process follows a context analysis procedure. Subsequently, the quantitative data collection method is based on the qualitative approach. Accordingly, assessing the context and literature was the first step in the research process. The qualitative approach used interviews and observations for data collection and was also used to identify instructional deficiencies and formulate questions for quantitative data collection.

Data Analysis

This context-based study used both qualitative and quantitative methods to analyze the data collected. In this context-based study, data analysis was conducted on the complex networks of contextual components (Wang & Hannafin, 2005). According to Table 2, the domains of context analysis and key themes that emerged and were applied in this study are listed in Table 3.

Table 3 Themes used for context analysis

Qualitative data included interviews and notes recorded on the observation checklist. These were analyzed through thematic categorization. Each record was first transcribed, imported into Excel for filtering, and then sent back to Microsoft Word for highlighting. The transcripts were read several times to get a feel for the whole thing. The observation checklist was assessed by watching video recordings and taking notes. However, SPSS software version 24.0 was used to analyze quantitative data using descriptive and inferential statistics, including frequency, percentage, mean, standard deviation, and one-sample t-test.

Results and Discussions

In the study, a total of 12 Biology teachers participated, with 11 males and one female. As displayed in Table 4, 41.67% of the teacher participants were from ShSPS, while 58.33% were from ShSS. The majority of these teachers had master’s degrees and had over ten years of teaching experience. As for the students involved, 52.5% were from ShSS and 47.5% were from ShSPS. The sex ratio among the students was 51.25% males and 48.75% females (Table 4).

Table 4 Statistics of teachers and students enrolled in the study

Teachers’ Context Analysis

Beliefs about the Practices of Using the PSMMS in Biology Instruction

The study analyzed teachers’ beliefs about the importance of the PSMMS in Biology instruction. Accordingly, most teachers interviewed (10 out of 12) stated that PSMMS improves students’ learning by enhancing their thinking skills, subject understanding, self-directed learning techniques, and behavior change, suggesting that it has a significant impact on students’ learning. About this, the study participant gave the following illustrative response:

In my opinion, using PSMMS in Biology classes improves students’ higher-order thinking skills by allowing them to understand and articulate problems in their context, stimulate reflection, and promote practical application knowledge (Teacher 4, ShSPS).

Concerning supportive learning, most of the teachers (nine out of 12) believed that it could enhance students’ engagement despite challenges in understanding and learning. About this, research participants said the following:

The PSMMS provides an engaging approach to Biology learning that promotes students’ active engagement and strengthens their awareness and understanding of the objectives and concepts they are expected to understand (Teacher 1, ShSS).

Despite the challenge, I believe that using metacognitive scaffolding in the problem-solving method will help students develop their critical thinking skills. In addition, both teachers and students enjoy participating in the teaching-learning process in a classroom environment that is conducive to learning (Teacher 4, ShSPS).

The majority of teachers (eight out of 12) interviewed about PSMMS in Biology instruction argued that it is not commonly used in classrooms and instead relies on established methods like group discussions, pre-learning questions, projects, and quizzes. Some sample responses from teachers are:

The problem-solving method augmented by metacognition is crucial to learning Biology, although students and teachers have limited experience. However, motivated students using this strategy can make the Biology learning experience attractive (Teacher 2, ShSPS).

Most students find learning Biology through the PSMMS a tiresome activity and believe that it is too challenging to achieve their learning goals (Teacher 1, ShSPS).

The inability to implement the PSMMS in Biology learning experiences is attributed to inadequate laboratory equipment, teaching aids, and school facilities (Teacher 7, ShSS).

On some occasions, I provide students with classwork, plans for implementing teaching strategies, arrange group discussions, and assist them in practicing subject-related skills. I then provide background information, promote class engagement, guide responses to questions, assess students’ existing knowledge and goals, provide relevant comments, and guide their thinking (Teacher 4, ShSPS).

Based on the results of the data analysis, it was found that teachers’ perceptions of the importance of the PSMMS to students’ Biology learning contributed significantly to the analysis of the learning context. Accordingly, the contribution of the PSMMS was to enhance students’ Biology learning by improving their critical thinking and learning experiences. Consistent with these findings, teachers’ positive beliefs about classroom problem-solving processes influence their approach to effective Biology teaching (Ishaku, 2015), and integrating metacognitive classroom interventions improves student learning, as evidenced by changes in conceptual learning and problem-solving skills (Guterman, 2002; Howard et al., 2001).

Observation of Teachers’ Classroom Instruction

The classroom instructional situation was observed to examine the effectiveness of PSMMS for Biology instruction. Consequently, teachers’ use of the PSMMS in Biology lessons was observed. According to the observation checklist, a total of 12 lessons, each lasting 40 minutes, were audited. The first step was to examine teachers’ daily lesson plans. Objectives were found to center predominantly on cognitive domains, neglecting higher-order problem-solving and metacognitive skills. This was evident from the use of terms such as “understand,” “know,” “write,” “explain,” and “describe” in the lesson plan objectives, which hold little significance for teaching Biology using the PSMMS. This finding is consistent with previous research (Chandio et al., 2016; Hyder & Bhamani, 2016) showing that the objectives of classroom lesson plans often focus on the lower cognitive domain, indicating lower-level knowledge acquisition.

Observing how teachers deliver lessons in the classroom revealed that they often require students to participate in group discussions, which they believe is a learner-centered approach. However, student engagement was limited, and the details of the tasks that students were expected to discuss were not outlined. Additionally, in the lessons observed, teachers failed to engage students, connect theory with practical applications, or support activity-based learning. On the other hand, teachers still have limited opportunities to assess understanding through targeted questions and encourage the use of critical thinking skills. Only oral questions, tests, or quizzes are used as an assessment method. These results were contradictory to the findings of other researchers’ studies, such as Ahmady and Nakhostin-Ruhi (2014) and Ishaku (2015), where teachers’ classroom lesson delivery is based on students’ constructivist and learner-centered environment acquiring advanced and critical thinking skills from Biology lessons.

The observation raised further questions regarding multimodal lesson delivery, revealing the use of visual representations of figures and diagrams in addition to the usual lecture style (auditory), raising additional concerns about multimodal instructional delivery. Therefore, there was no way to verify whether students had acquired the required higher-order skills, such as problem-solving and metacognitive skills, during their Biology learning. This finding contradicts the findings of Syofyan and Siwi’s (2018) research, which claims that students’ learning approaches are influenced by their sensory experiences. Consequently, students employ all their senses to capture information when teachers employ visual, auditory, and kinesthetic learning styles.

Students’ Context Analysis

The section presents the results of students’ responses collected using survey questions. Using a questionnaire with a five-point Likert scale ranging from strongly agree to strongly disagree (5 = strongly agree, 4 = agree, 3 = neutral, 2 = disagree, and 1 = strongly disagree), the impact of using PSMMS in Biology learning practices on students’ problem-solving and metacognitive skills was examined. The questionnaire had a response rate of 80 out of 98 (81.63%), indicating satisfactory status and acceptable use of the instrument. Therefore, in students’ responses to the survey questions on Biology learning practices using the PSMMS, there is significant (p < 0.05) variation across all dimensions of the items (M = 4.32, SD = 1.30), with mean scores above 4 indicating general students’ agreement with most items listed in Table 5.

Table 5 Students’ perceptions of skills acquired through PSMMS-based Biology learning practices

Regarding the problem-solving skills (Items 1–5) that students would acquire in their Biology learning practices using the PSMMS in Biology lessons, the strongest agreement was to investigate and identify the most effective problem-solving strategies (Item 4, M = 4.25, SD = 1.11), followed by creating the framework and design of the problem-solving activities (Item 2, M = 4.05, SD = 1.16), appropriately evaluating the results and providing alternative solutions to the problems (Item 5, M = 3.91, SD = 1.21), and identifying the problem in the problem sketch and interpreting the final result (Item 1, M = 3.90, SD = 1.28). On the other hand, students typically expressed less positive views about the PSMMS’s use of Biology instruction to enhance laboratory knowledge and problem-solving skills (Item 3, M = 3.25, SD = 1.57), despite significant differences in response patterns (Table 5).

Concerning students’ responses to the questionnaire items on metacognitive skills (Items 6–15) acquired in their Biology learning practices using the PSMMS, Table 5 shows that the most positive item states that the use of the PSMMS helps set clear learning objectives (Item 7, M = 4.36, SD = 1.09) and evaluates success by asking how well they did (Item 15, M = 4.29, SD = 1.10). Students tended to be less positive about learning Biology using the PSMMS, which is used to create examples and diagrams to make information more meaningful (Item 9, M = 3.83, SD = 1.21), despite the wide range of response patterns (Table 5). As a result, using PSMMS in Biology instruction helps students learn essential planning (Items 6–8), implementing (Items 9 and 10), monitoring (Items 11 and 12), and evaluating (Items 13–15) strategies for practice and to learn real-world applications of Biology (Table 5).

After data analysis of students’ responses to the survey questions, it was found that the PSMMS instructional approach is effective in helping students acquire problem-solving and metacognitive skills in their Biology learning practices. However, teachers’ responses, classroom observations, and resource availability indicated that the PSMMS approach was not effectively used to improve students’ problem-solving skills and strategies in Biology learning. The study highlights the disadvantages of shortages of laboratory facilities and large class sizes when implementing learner-centered practices in schools. These issues are supported by Kawishe’s (2016) study. Additionally, the PSMMS was not effectively applied in Biology instruction, resulting in students’ inability to develop metacognitive strategies and skills. Therefore, as studies have shown, students face challenges in acquiring metacognitive knowledge and regulation, which are crucial for the development of higher-order thinking skills in Biology learning (Aaltonen & Ikavalko, 2002; Lai, 2011).

Learning Context Analysis

This section presents the learning context analysis of PSMMS-based Biology instruction for two aspects, namely the availability of instructional resources in laboratories and pedagogical centers and the challenges in implementing the PSMMS in Biology instruction at Shambu Secondary and Preparatory School (ShSPS) and Shambu Secondary School (ShSS). Each is described below.

Availability of Instructional Resources in the Laboratories and Pedagogical Centers

In this section, a physical observation was conducted to assess the availability of instructional resources in Biology laboratories and pedagogical centers. The observation checklists were used to examine the impacts of their availability on Biology instruction using PSMMS.

Concerning the observations of the laboratory resources, it was noted that the two schools have independent Biology laboratories, but their functioning is hindered by poor organization, display tables, and a lack of water supply and waste disposal systems, as shown in Table 6. Some basic laboratory equipment and chemicals, including dissecting kits, centrifuges, measuring cylinders, protein foods, sodium hydroxide solution, 1% copper (II) sulfate solution, gas syringes, and hydrogen peroxide, are missing. One school, ShSS, has only seven resources out of 20 identified for observation, making it difficult to conduct laboratory activities (Table 6).

Table 6 Observation results of Biology laboratory facilities

Regarding the observations of instructional or teaching resources in the pedagogical centers, the results are shown in Table 7. The results showed that there were no independent or autonomous pedagogical centers in the two schools; instead, they used the Biology department offices as a pedagogical center and kept some teaching and learning aids there. On the other hand, only DNA and RNA models were accessible in ShSPS, while models of DNA and RNA as well as illustrations depicting the organization of animal cell structures were available in ShSS (Table 7).

Table 7 Observation results of instructional (teaching) aids in pedagogical centers

Challenges of Using the PSMMS in Biology Instruction

In this case, the results of interviews with teachers and survey results from students about the challenges they encountered when using the PSMMS in Biology instruction were used. The results of teachers’ and students’ responses are described below.

Teachers’ interview responses regarding the challenges they encountered in implementing the PSMMS in Biology instruction served as the basis for teachers’ perspectives. With the exception of two teachers who gave insignificant responses, the other teachers’ responses were categorized thematically. Therefore, Table 8 contains the response categories by themes, the number of respondents (N), and examples of responses. According to most teachers (N = 10), there is a lack of the required up-to-date knowledge, skills, and experience, and for other teachers (N = 7), there are shortages of equipment and chemicals (in Biology laboratories) as well as instructional aids (in pedagogical centers), which are challenges of using the PSMMS in Biology instruction. They also mentioned that challenging factors, such as the high student-teacher ratio and time constraints (N = 4), students’ deficiency of knowledge and attitudes towards learning (N = 3), and problems with school administrative functions (N = 1), have an impact on how well students learn Biology while using the PSMMS instructional approach (Table 8).

Table 8 Themes of the influencing factors of implementing the PSMMS in Biology instruction

Students’ perspectives, however, were based on their responses to survey questions concerning the challenges of using the PSMMS in Biology lessons, as shown in Table 9 below. The study found statistically significant (p < 0.05) differences across the five-item dimensions, with an average mean of 3.62 and a standard deviation of 1.36. Consequently, mean scores above 3 indicated that students agreed with the challenges of implementing the PSMMS in Biology instruction (Table 9).

Table 9 Students’ responses to the challenges of implementing the PSMMS in Biology learning

As shown in Table 9, the majority of students identified two key challenges to successfully implementing the PSMMS in their learning. These are shortages of instructional resources (Item 2, M = 3.56, SD = 1.39) and student difficulty in connecting their prior knowledge with Biological concepts (Item 1, M = 3.44, SD = 1.42). On the other hand, students responded that their teachers had the knowledge and awareness to conduct instructional processes using the PSMMS (Item 4, M = 3.95, SD = 1.22) and had the skills and competence to conduct instructional processes using the PSMMS (Item 5, M = 3.98, SD = 1.35). Table 9 also shows that, despite significant differences in response patterns, students generally had a negative opinion about the dominance of some students in collaborative work (Item 3, M = 3.16, SD = 1.43).

According to the analyzed data, one of the challenging factors was that teachers often lack the required knowledge and skills to facilitate learning, scaffold it, and successfully implement PSMMS in Biology instruction. In contrast, Belland et al. (2013) suggested that instructional scaffolds increase students’ autonomy, competence, and intimacy, which improves their motivation and enables them to identify appropriate challenges. The other challenging factor that influenced the use of the PSMMS in Biology instruction was the shortage of instructional resources and facilities. Consistent with the studies of Daganaso et al. (2020) and Kawishe (2016), the use of the PSMMS for Biology instruction faces challenges due to inadequate instructional resources, time constraints, and large class sizes. However, as Eshete (2001) describes, students lack the importance of instructional resources, as instructional resources are necessary for students to learn Biology effectively as they are essential for a deeper understanding of science.

Generally, the important findings from the analyses of the teachers, learners, and learning contexts and their implications for design principles are summarized in Table 10.

Table 10 Findings and implications of PSMMS instruction design guidelines

Conclusions

In this study, contexts (teachers, students, and learning) were analyzed with the aim of designing a context-driven problem-solving method with metacognitive scaffolding (PSMMS) for Biology instruction. Despite the potential benefits of the PSMMS, the findings of the current study indicate that the use of the PSMMS instructional approach faces challenges. These challenges include teachers’ lack of the required up-to-date knowledge and skills, students’ lack of awareness and positive attitude towards learning, an overloaded curriculum, scarcity of resources, large class sizes, and problems with school administrative functions. The study emphasizes the significance of context analysis in the design of an effective PSMMS instructional method for enhancing students’ learning in Biology. This analysis provides useful information for providing pertinent examples, practical content, and context-driven instruction.

The context-driven instructional design approach, using the PSMMS, addresses problems in teachers’ effectiveness, students’ effective learning, and the establishment of supportive teaching and learning environments. This approach considers the performance of both teachers and students, as well as the learning environment, including the availability of instructional resources. Consequently, this study concludes that understanding the needs of teachers in relation to the PSMMS can help both teachers and educational policymakers design a system that is well-suited to their specific requirements. Additionally, it can help students use their practical skills as well as establish connections between their prior knowledge and the Biology concepts they are learning. This process has the potential to generate innovative systems for applying the PSMMS instructional approach, with teachers serving as facilitators and students actively engaging and taking responsibility for their own learning progress.

The study investigated the importance of incorporating target groups into the design of the PSMMS for Biology instruction. The study’s empirical findings support the notion that the PSMMS should provide regular learning opportunities and foster the active engagement of teachers. The study also emphasizes the need to consider learning contexts while designing the PSMMS for Biology instruction that is deeply rooted in its particular context, as effective principles applied in one context could not yield the same results in another context. The study suggests that this strategy is particularly useful in developing countries like Ethiopia, where there is limited experience with metacognitive strategies to scaffold the problem-solving method in Biology instruction. As a result, the authors recommend expanding the target audience, considering the national context, and incorporating metacognitive knowledge and regulation strategies in designing context-driven PSMMS for secondary school Biology instruction.