Skip to main content
Log in

Mixing by Statistically Self-similar Gaussian Random Fields

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the passive transport of a scalar field by a spatially smooth but white-in-time incompressible Gaussian random velocity field on \(\mathbb {R}^d\). If the velocity field u is homogeneous, isotropic, and statistically self-similar, we derive an exact formula which captures non-diffusive mixing. For zero diffusivity, the formula takes the shape of \(\mathbb {E}\ \Vert \theta _t \Vert _{\dot{H}^{-s}}^2 = \textrm{e}^{-\lambda _{d,s} t} \Vert \theta _0 \Vert _{\dot{H}^{-s}}^2\) with any \(s\in (0,d/2)\) and \(\frac{\lambda _{d,s}}{D_1}:= s(\frac{\lambda _{1}}{D_1}-2s)\) where \(\lambda _1/D_1 = d\) is the top Lyapunov exponent associated to the random Lagrangian flow generated by u and \( D_1\) is small-scale shear rate of the velocity. Moreover, the mixing is shown to hold uniformly in diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. The physical dimensions of \(D_1\) are inverse time and it can be regarded as a proxy for the shear rate at small scales. See the discussion of Kraichnan, e.g. [23, Eq. (3.5)] This shows that \(D_1\) is essentially a square of the fine-scale turbulent shear-rate times a Lagrangian correlation time of the shear rate. We note that our notation differs slightly different from that used in recent literature which replaces \(D_1\rightarrow (d-1) D_1\).

References

  1. Alberti, Giovanni, Crippa, Gianluca, Mazzucato, Anna L.: Exponential self-similar mixing by incompressible flows,: 0894–0347,1088–6834. J. Am. Math. Soc. 32(2), 445–490 (2019). https://doi.org/10.1090/jams/913

    Article  Google Scholar 

  2. Balkovsky, E., Fouxon, A.: Universal long-time properties of lagrangian statistics in the batchelor regime and their application to the passive scalar problem. Phys. Rev. E 60(4), 4164 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure enhanced dissipation and uniform-in-diffusivity exponential mixing for advection-diffusion by stochastic Navier-Stokes. Probab. Theory Relat. Fields 179(3–4), 777–834 (2021). https://doi.org/10.1007/s00440-020-01010-8

    Article  MathSciNet  Google Scholar 

  4. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure exponential mixing of passive scalars by the stochastic Navier-Stokes equations,: 0091–1798,2168–894X. Ann. Probab. 50(1), 241–303 (2022). https://doi.org/10.1214/21-aop1533

    Article  MathSciNet  Google Scholar 

  5. Bernard, D., Gawedzki, K., Kupiainen, A.: Slow modes in passive advection. J. Stat. Phys. 90(3–4), 519–569 (1998). https://doi.org/10.1023/A:1023212600779

    Article  ADS  MathSciNet  Google Scholar 

  6. Blumenthal, A., Zelati, C., Michele, G., Rishabh, S.: Exponential mixing for random dynamical systems and an example of Pierrehumbert: exponential mixing for random dynamical systems and an example of Pierrehumbert. Ann. Probab. 51(4), 1559–1601 (2023). https://doi.org/10.1214/23-aop1627

    Article  MathSciNet  Google Scholar 

  7. Cardy, J., Falkovich, G., Gawedzki, K., Nazarenko, S., Zaboronski, O.V.: Non-equilibrium statistical mechanics and turbulence, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2008, 355, 978-0-521-71514-0, Lectures from the London Mathematical Society (LMS) Summer School held as part of the Warwick Turbulence Symposium at the University of Warwick, Warwick, 2568424, (2006) https://doi.org/10.1017/CBO9780511812149

  8. Coghi, M., Maurelli, M.: Existence and uniqueness by Kraichnan noise for 2D Euler equations with unbounded vorticity, arXiv preprint arXiv:2308.03216 (2023)

  9. Cooperman, W.: Exponential mixing by shear flows, arXiv e-prints, arXiv:2206.14239, 2206.14239 (2022)

  10. Elgindi, T.M., Liss, K., Mattingly, J.C.: Optimal enhanced dissipation and mixing for a time-periodic, Lipschitz velocity field on \(T^2\), arXiv e-prints, arXiv:2304.05374, 2304.05374 (2023)

  11. Elgindi, Tarek M., Zlatoš, A.: Universal mixers in all dimensions. Adv. Math. 356(106807), 33 (2019). https://doi.org/10.1016/j.aim.2019.106807

    Article  MathSciNet  Google Scholar 

  12. Eyink, Gregory, Jafari, A.: High schmidt-number turbulent advection and giant concentration fluctuations. Phys. Rev. Res. 4(2), 023246 (2022)

    Article  Google Scholar 

  13. Eyink, G., Jafari, A.: The Kraichnan model and non-equilibrium statistical physics of diffusive mixing. In: Annales Henri Poincaré 2024 (Vol. 25, No. 1, pp. 497–516). Cham: Springer International Publishing

  14. Falkovich, G., Gawedzki, K., Vergassola, M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73(4), 913–975 (2001). https://doi.org/10.1103/RevModPhys.73.913

    Article  ADS  MathSciNet  Google Scholar 

  15. Falkovich, G., Frishman, A.: Single flow snapshot reveals the future and the past of pairs of particles in turbulence. Phys. Rev. Lett. 110(21), 214502 (2013)

    Article  ADS  Google Scholar 

  16. Frishman, A., Boffetta, G., De Lillo, F., Liberzon, A.: Statistical conservation law in two-and three-dimensional turbulent flows. Phys. Rev. E 91(3), 033018 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gawedzki, K.: Turbulence under a magnifying glass. Quant. Fields Quant. Space Time, 123–150 (1997)

  18. Gawedzki, K.: Easy turbulence. arXiv preprint chao-dyn, 9907024/ (1999)

  19. Gawedzki, K.: Soluble models of turbulent advection, lectures given at the workshop “random media 2000”. Madralin by Warsaw. arXiv preprint nlin, 0207058/ (2000)

  20. Cardy, J., Falkovich, G., Gawedzki, K.: Soluble models of turbulent transport, Non-equilibrium statistical mechanics and turbulence. London Math. Soc. Lecture Note Ser., 355, Cambridge University Press, Cambridge, 44–107:2498207 (2008)

  21. Gess, B., Yaroslavtsev, I.: Stabilization by transport noise and enhanced dissipation in the Kraichnan model, arXiv e-prints. arXiv:2104.03949, 2104.03949 (2021)

  22. Haynes, P.H., Vanneste, J.: What controls the decay of passive scalars in smooth flows? Phys. Fluids 17(9), 097103 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kraichnan, Robert H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11(5), 945–953 (1968)

    Article  ADS  Google Scholar 

  24. Kraichnan, Robert H.: Statistical dynamics of two-dimensional flow. J. Fluid Mech. 67(1), 155–175 (1975)

    Article  ADS  Google Scholar 

  25. Landkof, N.S.: Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg,: Translated from the Russian by A, p. 180. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band (1972)

  26. Le Jan, Y.: On isotropic Brownian motions. Z. Wahrsch. Verw. Gebiete 70(4), 609–620 (1985). https://doi.org/10.1007/BF00531870

    Article  MathSciNet  Google Scholar 

  27. Le Jan, Y., Raimond, O.: Integration, of Brownian vector fields. Ann. Probab. 30(2), 826–873 (2002). https://doi.org/10.1214/aop/1023481009

    Article  MathSciNet  Google Scholar 

  28. Le Jan, Y., Raimond, O.: Flows, coalescence and noise. Ann. Probab. 32(2), 1247–1315 (2004). https://doi.org/10.1214/009117904000000207

    Article  MathSciNet  Google Scholar 

  29. Oakley, B.W., Thiffeault, J.-L., Doering, C.R.: On mix-norms and the rate of decay of correlations. Nonlinearity 34(6), 3762 (2021)

    Article  MathSciNet  Google Scholar 

  30. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator: Comm. Pure Appl. Math. 60(1), 67–112 (2007). https://doi.org/10.1002/cpa.20153

    Article  MathSciNet  Google Scholar 

  31. Son, D.T.: Turbulent decay of a passive scalar in the batchelor limit: exact results from a quantum-mechanical approach. Phys. Rev. E 59(4), R3811 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  32. Yao, Y., Zlatoš, A.: Mixing and un-mixing by incompressible flows,: 1435–9855,1435–9863. J. Eur. Math. Soc. (JEMS) 19(7), 1911–1948 (2017). https://doi.org/10.4171/JEMS/709

    Article  MathSciNet  Google Scholar 

  33. Zel’Dovich, Y.B., Ruzmaikin, A.A., Molchanov, S.A., Sokoloff, D.D.: Kinematic dynamo problem in a linear velocity field. J. Fluid Mech. 144, 1–11 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Eyink, A. Frishman and S. Punshon-Smith and the anonymous referee for useful comments. The research of MCZ was partially supported by the Royal Society URF\(\backslash \)R1\(\backslash \)191492 and EPSRC Horizon Europe Guarantee EP/X020886/1. The research of TDD was partially supported by the NSF DMS-2106233 grant and NSF CAREER award #2235395. The research of RSG was partially supported by the Deutsche Forschungsgemeinschaft through the SPP 2410/1 Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness. RSG’s research took place within the scope of the NCCR SwissMAP which was funded by the Swiss National Science Foundation (grant number 205607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore D. Drivas.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Additional information

Communicated by Denis Bernard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coti Zelati, M., Drivas, T.D. & Gvalani, R.S. Mixing by Statistically Self-similar Gaussian Random Fields. J Stat Phys 191, 61 (2024). https://doi.org/10.1007/s10955-024-03277-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-024-03277-w

Keywords

Navigation