Skip to main content
Log in

Free Energy in Spin Glass Models with Conventional Order

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recently, Baldwin and Swingle (J Stat Phys 190(7):125, 2023) considered spin glass models with additional conventional order parameters characterizing single-replica properties. These parameters are distinct from the standard order parameter, the overlap, used to measure correlations between replicas. A “min-max” formula for the free energy was prescribed in Baldwin and Swingle (2023). We rigorously verify this prescription in the setting of vector spin glass models featuring additional deterministic spin interactions. Notably, our results can be viewed as a generalization of the Parisi formula for vector spin glass models in Panchenko (Ann Probab 46(2):865–896, 2018), where the order parameter for self-overlap is already present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated during this work.

References

  1. Agliari, E., Barra, A., Burioni, R., Di Biasio, A.: Notes on the p-spin glass studied via Hamilton-Jacobi and smooth-cavity techniques. J. Math. Phys. 53(6), 063304, 29 (2012)

    Article  MathSciNet  Google Scholar 

  2. Baldwin, C.L., Swingle, B.: Revisiting the replica trick: competition between spin glass and conventional order. J. Stat. Phys. 190(7), 125 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barbier, J., Macris, N.: The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference. Probab. Theory Relat. Fields 174(3–4), 1133–1185 (2019)

    Article  MathSciNet  Google Scholar 

  4. Barbier, J., Macris, N.: The adaptive interpolation method for proving replica formulas. Applications to the Curie-Weiss and Wigner spike models. J. Phys. A 52(29), 294002 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bardi, M., Evans, L.C.: On Hopf’s formulas for solutions of Hamilton-Jacobi equations. Nonlinear Anal. 8(11), 1373–1381 (1984)

    Article  MathSciNet  Google Scholar 

  6. Barra, A.: The mean field Ising model trough interpolating techniques. J. Stat. Phys. 132, 787–809 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Barra, A., Di Biasio, A., Guerra, F.: Replica symmetry breaking in mean-field spin glasses through the Hamilton-Jacobi technique. J. Stat. Mech. 2010(09), P09006 (2010)

    Article  MathSciNet  Google Scholar 

  8. Barra, A., Genovese, G., Guerra, F.: Equilibrium statistical mechanics of bipartite spin systems. J. Phys. A 44(24), 245002, 22 (2011)

    Article  MathSciNet  Google Scholar 

  9. Barra, A., Del Ferraro, G., Tantari, D.: Mean field spin glasses treated with PDE techniques. Eur. Phys. J. B 86(7), Art. 332, 10 (2013)

    Article  MathSciNet  Google Scholar 

  10. Barra, A., Di Lorenzo, A., Guerra, F., Moro, A.: On quantum and relativistic mechanical analogues in mean-field spin models. Proc. R. Soc. A 470(2172), 20140589 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Barra, A., Contucci, P., Mingione, E., Tantari, D.: Multi-species mean field spin glasses. Rigorous results. Ann. Henri Poincaré 16(3), 691–708 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bates, E., Sohn, Y.: Free energy in multi-species mixed p-spin spherical models. Electron. J. Probab. 27, 1–75 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bates, E., Sohn,Y.: Parisi formula for balanced Potts spin glass (2023). arXiv:2310.06745

  14. Camilli, F., Contucci, P., Mingione, E.: An inference problem in a mismatched setting: a spin-glass model with Mattis interaction. SciPost Phys. 12(4), 125 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  15. Chen, W.-K.: The Aizenman-Sims-Starr scheme and Parisi formula for mixed p-spin spherical models. Electron. J. Probab. 18, 1–14 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chen, W.-K.: On the mixed even-spin Sherrington-Kirkpatrick model with ferromagnetic interaction. Ann. l’IHP Probab. Stat. 50(1), 63–83 (2014)

    Article  MathSciNet  Google Scholar 

  17. Chen, H.-B.: Hamilton-Jacobi equations for nonsymmetric matrix inference. Ann. Appl. Probab. 32(4), 2540–2567 (2022)

    Article  MathSciNet  Google Scholar 

  18. Chen, H.-B.: Self-overlap correction simplifies the Parisi formula for vector spins. Electron. J. Probab. 28, 1–20 (2023)

    Article  MathSciNet  Google Scholar 

  19. Chen, H.-B.: On the self-overlap in vector spin glasses (2023). arXiv:2311.09880

  20. Chen, H.-B., Mourrat, J.-C.: On the free energy of vector spin glasses with non-convex interactions (2023). arXiv:2311.08980

  21. Chen, H.-B., Xia, J.: Hamilton-Jacobi equations from mean-field spin glasses (2022). arXiv:2201.12732

  22. Chen, H.-B., Xia, J.: Hamilton–Jacobi equations with monotone nonlinearities on convex cones (2022). arXiv:2206.12537

  23. Chen, H.-B., Xia, J.: Hamilton-Jacobi equations for inference of matrix tensor products. Ann. Inst. Henri Poincaré Probab. Stat. 58(2), 755–793 (2022)

    Article  MathSciNet  Google Scholar 

  24. Chen, H.-B., Xia, J.: Free energy of multi-layer generalized linear models. Commun. Math. Phys. 1–53 (2023)

  25. Chen, H., Mourrat, J.-C., Xia, J.: Statistical inference of finite-rank tensors. Ann. Henri Lebesgue 5, 1161–1189 (2022)

    Article  MathSciNet  Google Scholar 

  26. Dominguez, T., Mourrat, J.-C.: Statistical mechanics of mean-field disordered systems: a Hamilton-Jacobi approach (2023). arXiv:2311.08976

  27. Genovese, G., Barra, A.: A mechanical approach to mean field spin models. J. Math. Phys. 50(5), 053303 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Guerra, F.: Sum rules for the free energy in the mean field spin glass model. Fields Inst. Commun. 30(11) (2001)

  29. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233(1), 1–12 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  31. Lions, P.-L., Rochet, J.-C.: Hopf formula and multitime Hamilton-Jacobi equations. Proc. Am. Math. Soc. 96(1), 79–84 (1986)

    Article  MathSciNet  Google Scholar 

  32. Mottishaw, P.: First-order spin glass transitions: an exact solution. Europhys. Lett. 1(8), 409 (1986)

    Article  ADS  Google Scholar 

  33. Mourrat, J.-C.: Hamilton-Jacobi equations for finite-rank matrix inference. Ann. Appl. Probab. 30(5), 2234–2260 (2020)

    Article  MathSciNet  Google Scholar 

  34. Mourrat, J.-C.: Hamilton-Jacobi equations for mean-field disordered systems. Ann. H. Lebesgue 4, 453–484 (2021)

    Article  MathSciNet  Google Scholar 

  35. Mourrat, J.-C.: Nonconvex interactions in mean-field spin glasses. Probab. Math. Phys. 2(2), 281–339 (2021)

    Article  MathSciNet  Google Scholar 

  36. Mourrat, J.-C.: The Parisi formula is a Hamilton-Jacobi equation in Wasserstein space. Can. J. Math. 74(3), 607–629 (2022)

    Article  MathSciNet  Google Scholar 

  37. Mourrat, J.-C.: Free energy upper bound for mean-field vector spin glasses. Ann. Inst. Henri Poincaré Probab. Stat. 59(3), 1143–1182 (2023)

    Article  MathSciNet  Google Scholar 

  38. Mourrat, J.-C., Panchenko, D.: Extending the Parisi formula along a Hamilton-Jacobi equation. Electron. J. Probab. 25, 17 (2020)

    Article  MathSciNet  Google Scholar 

  39. Panchenko, D.: Free energy in the generalized Sherrington-Kirkpatrick mean field model. Rev. Math. Phys. 17(7), 793–857 (2005)

    Article  MathSciNet  Google Scholar 

  40. Panchenko, D.: The Sherrington-Kirkpatrick Model. Springer Monographs in Mathematics, Springer, New York (2013)

    Book  Google Scholar 

  41. Panchenko, D.: The Parisi formula for mixed \( p \)-spin models. Ann. Probab. 42(3), 946–958 (2014)

    Article  MathSciNet  Google Scholar 

  42. Panchenko, D.: The free energy in a multi-species Sherrington-Kirkpatrick model. Ann. Probab. 43(6), 3494–3513 (2015)

    Article  MathSciNet  Google Scholar 

  43. Panchenko, D.: Free energy in the Potts spin glass. Ann. Probab. 46(2), 829–864 (2018)

    Article  MathSciNet  Google Scholar 

  44. Panchenko, D.: Free energy in the mixed \(p\)-spin models with vector spins. Ann. Probab. 46(2), 865–896 (2018)

    Article  MathSciNet  Google Scholar 

  45. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43(23), 1754 (1979)

    Article  ADS  Google Scholar 

  46. Parisi, G.: A sequence of approximated solutions to the SK model for spin glasses. J. Phys. A 13(4), L115–L121 (1980)

    Article  ADS  Google Scholar 

  47. Parisi, G.: Order parameter for spin-glasses. Phys. Rev. Lett. 50(24), 1946 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  48. Rockafellar, R.T.: Convex Analysis, vol. 36. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  49. Ruelle, D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys. 108, 225–239 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  50. Talagrand, M.: Free energy of the spherical mean field model. Probab. Theory Relat. Fields 134(3), 339–382 (2006)

    Article  MathSciNet  Google Scholar 

  51. Talagrand, M.: The Parisi formula. Ann. Math. (2) 163(1), 221–263 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Jean-Christophe Mourrat for stimulating discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 757296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bin Chen.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare.

Additional information

Communicated by Federico Ricci-Tersenghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Convergence of \(m_N\)

Appendix A: Convergence of \(m_N\)

As mentioned in Remark 1.4, we can show that \(m_N\) in (1.4) always converges under the Gibbs measure associated with \(F^{\textsf{soc}}_N\) in (1.2). When \(h=\textbf{s}\), we have that \(m_N = \frac{\sigma \sigma ^\intercal }{N}\) is the self-overlap and such a result has been proved in [19, Theorem 1.1 (1) and (2)]. A straightforward modification gives the desired result below.

Proposition A.1

Under conditions (H0)–(H4), if h is bounded and measurable, then \(m_N\) in (1.4) satisfies

$$\begin{aligned} \lim _{N\rightarrow \infty } \mathbb {E}\left\langle \left|m_N - \nabla \mathscr {P}^h(0)\right| \right\rangle = 0 \end{aligned}$$

where \(\mathscr {P}^h\) is defined in (2.4) and \(\left\langle \cdot \right\rangle \) is the Gibbs measure associated with \(F^{\textsf{soc}}_N\) in (1.2).

For completeness, we present the proof, which follows from the straightforward combination of the next two lemmas. We assume (H0)–(H4) henceforth.

Lemma A.2

Let \(\left\langle \cdot \right\rangle \) be associated with \(F^{\textsf{soc}}_N\). If h is bounded and measurable, then

$$\begin{aligned} \lim _{N\rightarrow \infty }\mathbb {E}\left\langle m_N\right\rangle = \nabla \mathscr {P}^h(0). \end{aligned}$$

Proof

Recall \(\mathcal {F}_N\) defined in (2.6). Let \(y\in \mathbb {R}^d\) and \(r>0\). The convexity of \(\mathcal {F}_N\) by Lemma 2.3 implies

$$\begin{aligned} \frac{\mathcal {F}_N(0,0)-\mathcal {F}_N(0,-ry)}{r} \leqslant y\cdot \nabla \mathcal {F}_N(0,0) \leqslant \frac{\mathcal {F}_N(0,ry)-\mathcal {F}_N(0,0)}{r}. \end{aligned}$$

Sending \(N\rightarrow \infty \) and then \(r\rightarrow 0\), and using Lemma 2.1 and the differentiability of \(\mathscr {P}^h\) in Lemma 2.2, we get

$$\begin{aligned} \lim _{N\rightarrow \infty } y\cdot \nabla \mathcal {F}_N(0,0) = y\cdot \nabla \mathscr {P}^h(0). \end{aligned}$$
(A.1)

Varying y, we get \(\lim _{N\rightarrow \infty } \nabla \mathcal {F}_N(0,0) = \nabla \mathscr {P}^h(0)\) in \(\mathbb {R}^d\). Recall from (2.11) that \(\nabla \mathcal {F}_N(0,0) = \mathbb {E}\left\langle m_N\right\rangle \) where \(\left\langle \cdot \right\rangle \) is associated with \(\mathcal {F}_N(0,0)\). The desired result follows from the observation that \(\mathcal {F}_N(0,0)=F^{\textsf{soc}}_N\).

Lemma A.3

Let \(\left\langle \cdot \right\rangle \) be associated with \(F^{\textsf{soc}}_N\). If h is bounded and measurable, then

$$\begin{aligned} \lim _{N\rightarrow \infty }\mathbb {E}\left\langle \left|m_N - \mathbb {E}\left\langle m_N\right\rangle \right| \right\rangle . \end{aligned}$$

Proof

For \(x\in \mathbb {R}^d\), we write \(\mathcal {F}_N(x)=\mathcal {F}_N(0,x)\) (in (2.6)) for brevity. Let \(\left\langle \cdot \right\rangle _x\) be the Gibbs measure associated with \(\mathcal {F}_N(x)\). Since \(\mathcal {F}_N(0) = F^{\textsf{soc}}_N\), we have \(\left\langle \cdot \right\rangle =\left\langle \cdot \right\rangle _0\). Fix any \(y\in \mathbb {R}^d\) and set \(g(\sigma ) = Ny\cdot m_N = y\cdot \sum _{i=1}^Nh(\sigma _i)\). It suffices to show

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N}\mathbb {E}\left\langle \left|g(\sigma ) - \mathbb {E}\left\langle g(\sigma )\right\rangle _0\right| \right\rangle _0 =0. \end{aligned}$$
(A.2)

Step 1. We show

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N}\mathbb {E}\left\langle \left|g(\sigma ) - \left\langle g(\sigma )\right\rangle _0\right| \right\rangle _0 =0. \end{aligned}$$
(A.3)

We denote by \((\sigma ^l)_{l\in \mathbb {N}}\) independent copies of \(\sigma \) under the relevant Gibbs measure. Let \(r>0\). Integrating by parts, we get

$$\begin{aligned}&r\mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\right\rangle _0\\&= \int _0^r \mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\right\rangle _{sy} \textrm{d}s -\int _0^r \int _0^t \frac{\textrm{d}}{\textrm{d}s} \mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\right\rangle _{sy}\textrm{d}s \textrm{d}t. \end{aligned}$$

The integrand in the last term can be estimated as follows

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}s} \mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\right\rangle _{sy} = \mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\left(g\left(\sigma ^1\right)+g\left(\sigma ^2\right)-2g\left(\sigma ^3\right)\right)\right\rangle _{sy} \\ \geqslant -2 \mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|^2\right\rangle _{sy}\geqslant -8 \mathbb {E}\left\langle \left|g\left(\sigma \right) -\left\langle g\left(\sigma \right)\right\rangle _{sy}\right|^2\right\rangle _{sy}. \end{aligned}$$

Inserting this into the previous display, we obtain

$$\begin{aligned}&\mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\right\rangle _0\\&\leqslant \frac{1}{r}\int _0^r\mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\right\rangle _{sy} \textrm{d}s + \frac{8}{r}\int _0^r \int _0^t \mathbb {E}\left\langle \left|g\left(\sigma \right) -\left\langle g\left(\sigma \right)\right\rangle _{sy}\right|^2\right\rangle _{sy}\textrm{d}s \textrm{d}t \\&\leqslant \frac{2}{r}\int _0^r\mathbb {E}\left\langle \left|g\left(\sigma \right) -\left\langle g\left(\sigma \right)\right\rangle _{sy}\right|\right\rangle _{sy} \textrm{d}s + 8\int _0^r \mathbb {E}\left\langle \left|g\left(\sigma \right) -\left\langle g\left(\sigma \right)\right\rangle _{sy}\right|^2\right\rangle _{sy}\textrm{d}s . \end{aligned}$$

Setting \(\varepsilon _N = \frac{1}{N} \int _0^r \mathbb {E}\left\langle \left|g\left(\sigma \right) -\left\langle g\left(\sigma \right)\right\rangle _{sy}\right|^2\right\rangle _{sy}\textrm{d}s\), we can rewrite the above estimate as

$$\begin{aligned} \frac{1}{N}\mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\right\rangle _0 \leqslant 2 \sqrt{\frac{\varepsilon _N}{rN}}+ 8 \varepsilon _N. \end{aligned}$$

Using (2.8), we have

$$\begin{aligned} \varepsilon _N&= \int _0^r \frac{\textrm{d}^2}{\textrm{d}s^2}\mathcal {F}_N(sy) \textrm{d}s = y\cdot \nabla \mathcal {F}_N(ry) - y \cdot \nabla \mathcal {F}_N(0)\\&\leqslant \frac{\mathcal {F}_N((r+t)y) - \mathcal {F}_N(ry)}{t} - \frac{\mathcal {F}_N(0) - \mathcal {F}_N(-t y)}{t} \end{aligned}$$

for any \(t>0\), where the last inequality follows from the convexity of \(\mathcal {F}_N\) given by Lemma 2.3. Combining the above two displays, using Lemma 2.1, and noticing \(\sup _N\varepsilon _N<\infty \) (due to (2.5)), we obtain

$$\begin{aligned} \limsup _{N\rightarrow \infty } \frac{1}{8N}\mathbb {E}\left\langle \left|g\left(\sigma ^1\right) -g\left(\sigma ^2\right)\right|\right\rangle _0 \leqslant \frac{\mathscr {P}^h((r+t)y) - \mathscr {P}^h(ry)}{t} - \frac{\mathscr {P}^h(0) - \mathscr {P}^h(-t y)}{t}. \end{aligned}$$

We first send \(r\rightarrow 0\) and then \(t\rightarrow 0\). Since \(\mathscr {P}^h\) is differentiable by Lemma 2.2, the right-hand side vanishes, which yields (A.3).

Step 2. We show

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N}\mathbb {E}\left| \left\langle g(\sigma )\right\rangle _0 - \mathbb {E}\left\langle g(\sigma )\right\rangle _0\right| =0. \end{aligned}$$
(A.4)

Recall \({\widetilde{\mathcal {F}}}_N\) below (2.6) and we write \({\widetilde{\mathcal {F}}}_N(\cdot )= {\widetilde{\mathcal {F}}}_N(0,\cdot )\) for brevity. We can use (2.11) to rewrite

$$\begin{aligned} \frac{1}{N}\mathbb {E}\left| \left\langle g(\sigma )\right\rangle _0 - \mathbb {E}\left\langle g(\sigma )\right\rangle _0\right| = \mathbb {E}\left| y\cdot \nabla {\widetilde{\mathcal {F}}}_N(0) - y\cdot \nabla \mathcal {F}_N(0)\right|. \end{aligned}$$
(A.5)

For \(r\in (0,1]\), we define

$$\begin{aligned} \delta _N(r) = \left|{\widetilde{\mathcal {F}}}_N(-ry)-\mathcal {F}_N(-ry)\right| + \left|{\widetilde{\mathcal {F}}}_N(0)-\mathcal {F}_N(0)\right| + \left|{\widetilde{\mathcal {F}}}_N(ry)-\mathcal {F}_N(ry)\right|. \end{aligned}$$

In view of (2.12), \({\widetilde{\mathcal {F}}}_N\) is convex, which implies that \(y\cdot \nabla {\widetilde{\mathcal {F}}}_N(0) - y\cdot \nabla \mathcal {F}_N(0)\) is bounded from above by

$$\begin{aligned} \frac{{\widetilde{\mathcal {F}}}_N(ry) - {\widetilde{\mathcal {F}}}_N(0)}{r} - y\cdot \nabla \mathcal {F}_N(0) \leqslant \frac{\mathcal {F}_N(ry)-\mathcal {F}_N(0)}{r}-y\cdot \nabla \mathcal {F}_N(0)+ \frac{\delta _N(r)}{r} \end{aligned}$$

and from below by

$$\begin{aligned} \frac{{\widetilde{\mathcal {F}}}_N(0) - {\widetilde{\mathcal {F}}}_N(-ry)}{r} - y\cdot \nabla \mathcal {F}_N(0) \geqslant \frac{\mathcal {F}_N(0)-\mathcal {F}_N(-ry)}{r}-y\cdot \nabla \mathcal {F}_N(0)- \frac{\delta _N(r)}{r}. \end{aligned}$$

By the standard concentration result (e.g. see [40, Theorem 1.2]), there is a constant \(C>0\) such that \(\sup _{r\in (0,1]}\mathbb {E}\delta _N(r)\leqslant CN^{-\frac{1}{2}}\). This along with Lemma 2.1 and (A.1) gives

$$\begin{aligned}&\limsup _{N\rightarrow \infty } \mathbb {E}\left|y\cdot \nabla {\widetilde{\mathcal {F}}}_N(0) - y\cdot \nabla \mathcal {F}_N(0)\right| \\&\leqslant \left|\frac{\mathscr {P}^h(ry)-\mathscr {P}^h(0)}{r}-y\cdot \nabla \mathscr {P}^h(0)\right| + \left|\frac{\mathscr {P}^h(0)-\mathscr {P}^h(-ry)}{r}-y\cdot \nabla \mathscr {P}^h(0)\right|. \end{aligned}$$

Sending \(r\rightarrow \infty \), using the differentiability of \(\mathscr {P}^h\), and inserting this to (A.5), we get (A.4).

In conclusion, (A.2) follows from (A.3) and (A.4) and thus the proof is complete.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HB. Free Energy in Spin Glass Models with Conventional Order. J Stat Phys 191, 49 (2024). https://doi.org/10.1007/s10955-024-03266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-024-03266-z

Keywords

Mathematics Subject Classification

Navigation