Skip to main content
Log in

Flocking Behavior of the Cucker–Smale Model on Infinite Graphs with a Central Vertex Group

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This article investigates the flocking behavior of the Cucker–Smale (CS) model on infinite graphs, considering both standard and cut-off interactions. We introduce the concept of connected infinite graphs with a central vertex group and then derive sufficient conditions for the CS model to produce flocking behavior. For standard interaction, we find that the CS model will exhibit flocking behavior exponentially when the connected infinite graph is equipped with a central vertex group. However, for cut-off interaction, we need the time-varying graph induced by interparticle distance to have a fixed central vertex group and the coupling strength to be above a certain threshold to produce the flocking behavior. Our theoretical analysis shows that if a connected infinite graph has a central vertex group, the second eigenvalue of the corresponding Laplacian is positive, which is crucial for the proof of flocking behavior. The consistent convergence towards flocking may well reveal the advantages and necessities of having a central vertex group in an infinite-particle complex system with sufficient intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cucker, F., Smale, S.: On the mathematics of emergence. Japan. J. Math. 2, 197–227 (2007)

    Article  MathSciNet  Google Scholar 

  2. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Automat. Control 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  3. Li, Z., Ha, S.-Y., Xue, X.: Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership. Math. Models Methods Appl. Sci. 24, 1389–1419 (2014)

    Article  MathSciNet  Google Scholar 

  4. Li, Z., Xue, X.: Cucker-Smale flocking under rooted leadership with fixed and switching topologies. SIAM J. Appl. Math. 70, 3156–3174 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cucker, F., Dong, J.: Avoiding collisions in flocks. IEEE Trans. Automat. Control 55, 1238–1243 (2010)

    Article  MathSciNet  Google Scholar 

  6. Li, Z.: Effectual leadership in flocks with hierarchy and individual preference. Discrete Contin. Dyn. Syst. 34, 3683–3702 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cheng, J., Li, Z., Wu, J.: Flocking in a two-agent Cucker-Smale model with large delay. Proc. Am. Math. Soc. 149, 1711–1721 (2021)

    Article  MathSciNet  Google Scholar 

  8. Shen, J.: Cucker-Smale flocking under hierarchical leadership. SIAM J. Appl. Math. 68, 694–719 (2007)

    Article  MathSciNet  Google Scholar 

  9. Dong, J., Qiu, L.: Flocking of the Cucker-Smale model on general digraphs. IEEE Trans. Automat. Control 62, 5234–5239 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ha, S.-Y., Kim, J., Park, J., Zhang, X.: Complete cluster predictability of the Cucker-Smale flocking model on the real line. Arch. Ration. Mech. Anal. 231, 319–365 (2019)

    Article  MathSciNet  Google Scholar 

  11. Peszek, J.: Existence of piecewise weak solutions of a discrete Cucker-Smale’s flocking model with a singular communication weight. J. Differ. Equ. 257, 2900–2925 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Peszek, J.: Discrete Cucker-Smale flocking model with a weakly singular weight. SIAM J. Math. Anal. 47, 3671–3686 (2015)

    Article  MathSciNet  Google Scholar 

  13. Ha, S.-Y., Tadmor, E.: From the particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1, 415–435 (2008)

    Article  MathSciNet  Google Scholar 

  14. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)

    Article  MathSciNet  Google Scholar 

  15. Ha, S.-Y., Liu, J.-G.: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7, 297–325 (2009)

    Article  MathSciNet  Google Scholar 

  16. Wang, X., Xue, X.: Formation behavior of the kinetic Cucker-Smale model with non-compact support. Proc. R. Soc. Edinb. Sect. A 153, 1315–1346 (2023)

    Article  Google Scholar 

  17. Chen, Z., Yin, X.: The kinetic Cucker-smale model: well posedness and asymptotic behavior. SIAM J. Math. Anal. 51, 3819–3853 (2019)

    Article  MathSciNet  Google Scholar 

  18. Canizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 51, 515–539 (2011)

    Article  MathSciNet  Google Scholar 

  19. Karper, T.K., Mellet, A., Trivisa, K.: Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal. 45, 215–243 (2013)

    Article  MathSciNet  Google Scholar 

  20. Mucha, P.B., Peszek, J.: The Cucker-Smale equation: singular communication weight, measure-valued solutions and weak-atomic uniqueness. Arch. Ration. Mech. Anal. 227, 273–308 (2018)

    Article  MathSciNet  Google Scholar 

  21. Jabin, P.-E., Poyato, D., Soler, J.: Mean-field limit of non-exchangeable systems. arXiv:2112.15406

  22. Kaliuzhnyi-Verbovetskyi, D., Medvedev, G.S.: The mean field equation for the Kuramoto model on graph sequences with non-Lipschitz limit. SIAM J. Math. Anal. 50, 2441–2465 (2018)

    Article  MathSciNet  Google Scholar 

  23. Pathria, R.K., Beale, P.D.: Statistical Mechanics, 4th edn. Academic Press, London (2021). https://doi.org/10.1016/C2017-0-01713-5

    Book  Google Scholar 

  24. Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory Ser. B 96, 933–957 (2006)

    Article  MathSciNet  Google Scholar 

  25. Medvedev, G.: The nonlinear heat equation on dense graphs and graph Limits. SIAM J. Math. Anal. 46, 883–898 (2014)

    Article  MathSciNet  Google Scholar 

  26. Medvedev, G.: The nonlinear heat equation on W-random graphs. Arch. Ration. Mech. Anal. 212, 781–803 (2014)

    Article  MathSciNet  Google Scholar 

  27. Bonnet, B., Pouradier-Duteil, N., Sigalotti, M.: Consensus formation in first-order graphon models with time-varying topologies. Math. Models Methods Appl. Sci. 32, 2121–2188 (2022)

    Article  MathSciNet  Google Scholar 

  28. Barlow, M., Coulhon, T., Grigor’yan, A.: Manifolds and graphs with slow heat kernel decay. Invent. Math. 144, 609–649 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  29. Bramburger, J.: Stability of infinite systems of coupled oscillators via random walks on weighted graphs. Trans. Am. Math. Soc. 372, 1159–1192 (2019)

    Article  MathSciNet  Google Scholar 

  30. Buttà, P., Marchioro, C.: Cucker-Smale type dynamics of infinitely many individuals with repulsive forces. J. Stat. Phys. 181, 2094–2108 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, X., Xue, X.: The flocking behavior of the infinite-particle Cucker-Smale model. Proc. Am. Math. Soc. 150, 2165–2179 (2022)

    MathSciNet  Google Scholar 

  32. Wang, X., Xue, X.: The collective behavior of the Cucker-Smale model on infinite graphs. Sci. Sin. Math. 53, 1799–1826 (2023) (in Chinese)

  33. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time delays. IEEE Trans. Automat. Control 49, 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  34. Vizuete, R., Garin, F., Frasca, P.: The Laplacian spectrum of large graphs sampled from graphons. IEEE Trans. Netw. Sci. Eng. 8, 1711–1721 (2021)

    Article  MathSciNet  Google Scholar 

  35. Wu, C.W.: Algebraic connectivity of directed graphs. Linear Multilinear Algebra 53, 203–223 (2005)

    Article  MathSciNet  Google Scholar 

  36. Morales, J., Peszek, J., Tadmor, E.: Flocking with short-range interactions. J. Stat. Phys. 176, 382–397 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. Royden, H.L.: Real Analysis, 3rd edn. McMillan, New York (1988)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers whose comments enriched the paper. Meanwhile, the authors are also very thankful to Qifan Mao for his suggestions on properly conveying the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Xue.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xue, X. Flocking Behavior of the Cucker–Smale Model on Infinite Graphs with a Central Vertex Group. J Stat Phys 191, 47 (2024). https://doi.org/10.1007/s10955-024-03255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-024-03255-2

Keywords

Mathematics Subject Classification

Navigation