Skip to main content
Log in

Correlation Function of a Random Scalar Field Evolving with a Rapidly Fluctuating Gaussian Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a scalar field governed by an advection–diffusion equation (or a more general evolution equation) with rapidly fluctuating, Gaussian distributed random coefficients. In the white noise limit, we derive the closed evolution equation for the ensemble average of the random scalar field by three different strategies, i.e., Feynman–Kac formula, the limit of Ornstein-Uhlenbeck process, and evaluating the cluster expansion of the propagator on an n-simplex. With the evolution equation for the ensemble average, we study the passive scalar transport problem with two different types of flows, random flows possessing underlying periodic spatio-temporal structures, and a random strain flow. For the former, by utilizing the homogenization method, we show that the N-point correlation function of the random scalar field satisfies an effective diffusion equation at long times. Moreover, we identify an effective equation for the passive scalar based appealing to the Hausdorff moment problem, which shows that the periodic random flow yields a deterministic enhanced effective diffusion in the coarse-grained limit. For the strain flow, we explicitly compute the mean of the random scalar field and show that the statistics of the random scalar field have a connection to the time integral of geometric Brownian motion, allowing for an explicit representation of the probability distribution function (PDF) for the random passive scalar. Interestingly, all normalized moments (e.g., skewness, kurtosis) of this random scalar field diverge at long times, meaning that the scalar becomes more and more intermittent during its decay, however here this intermittency is arising through an emerging singularity in the core of the PDF at long times. Further, using the moment closure equations for the random strain flow, we compute integral representations for the N point correlation function and compare those predictions with Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aiyer, A.K., Subramanian, K., Bhat, P.: Passive scalar mixing and decay at finite correlation times in the batchelor regime. J. Fluid Mech. 824, 785–817 (2017)

    ADS  MathSciNet  Google Scholar 

  2. Avellaneda, M., Majda, A.J.: Simple examples with features of renormalization for turbulent transport. Philos. Trans. R. Soc. Lond. Ser. A 346, 205–233 (1994)

  3. Bertoin, J., Dufresne, D., Yor, M.: Some two-dimensional extensions of bougerol’s identity in law for the exponential functional of linear brownian motion. Revista matemática iberoamericana 29, 1307–1324 (2013)

    MathSciNet  Google Scholar 

  4. Bhat, P., Subramanian, K.: Fluctuation dynamos at finite correlation times using renewing flows. J. Plasma Phys. 81, 395810502 (2015)

    Google Scholar 

  5. Bolles, C.T., Speer, K., Moore, M.: Anomalous wave statistics induced by abrupt depth change. Phys. Rev. Fluids 4, 011801 (2019)

    ADS  Google Scholar 

  6. Bronski, J.C., Camassa, R., Lin, Z., McLaughlin, R.M., Scotti, A.: An explicit family of probability measures for passive scalar diffusion in a random flow. J. Stat. Phys. 128, 927–968 (2007)

    ADS  MathSciNet  Google Scholar 

  7. Bronski, J.C., McLaughlin, R.M.: Scalar intermittency and the ground state of periodic schrödinger equations. Phys. Fluids 9, 181–190 (1997)

    ADS  MathSciNet  Google Scholar 

  8. Bronski, J.C., McLaughlin, R.M.: The problem of moments and the majda model for scalar intermittency. Phys. Lett. A 265, 257–263 (2000)

    ADS  MathSciNet  Google Scholar 

  9. Bronski, J.C., McLaughlin, R.M.: Rigorous estimates of the tails of the probability distribution function for the random linear shear model. J. Stat. Phys. 98, 897–915 (2000)

    MathSciNet  Google Scholar 

  10. Camassa, R., Ding, L., Kilic, Z., McLaughlin, R.M.: Persisting asymmetry in the probability distribution function for a random advection-diffusion equation in impermeable channels. Physica D 425, 132930 (2021). https://doi.org/10.1016/j.physd.2021.132930

    Article  MathSciNet  Google Scholar 

  11. Camassa, R., Kilic, Z., McLaughlin, R.M.: On the symmetry properties of a random passive scalar with and without boundaries, and their connection between hot and cold states. Physica D 400, 132124 (2019)

    MathSciNet  Google Scholar 

  12. Caravelli, F., Mansour, T., Sindoni, L., Severini, S.: On moments of the integrated exponential brownian motion. Eur. Phys. J. Plus 131, 1–10 (2016)

    Google Scholar 

  13. Chechkin, A.V., Seno, F., Metzler, R., Sokolov, I.M.: Brownian yet non-gaussian diffusion: from superstatistics to subordination of diffusing diffusivities. Phys. Rev. X 7, 021002 (2017)

    Google Scholar 

  14. Csáki, E., Csörgő, M., Lin, Z., Révész, P.: On infinite series of independent Ornstein-Uhlenbeck processes. Stoch. Process. Appl. 39, 25–44 (1991)

    MathSciNet  Google Scholar 

  15. Ding, L.: Shear dispersion of multispecies electrolyte solutions in the channel domain. J. Fluid Mech. 970, A27 (2023). https://doi.org/10.1017/jfm.2023.626

    Article  ADS  MathSciNet  Google Scholar 

  16. Ding, L., Hunt, R., McLaughlin, R.M., Woodie, H.: Enhanced diffusivity and skewness of a diffusing tracer in the presence of an oscillating wall. Res. Math. Sci. 8, 1–29 (2021). https://doi.org/10.1007/s40687-021-00257-4

    Article  MathSciNet  Google Scholar 

  17. Ding, L., McLaughlin, R.M.: Determinism and invariant measures for diffusing passive scalars advected by unsteady random shear flows. Phys. Rev. Fluids 7, 074502. https://doi.org/10.1103/PhysRevFluids.7.074502 (2022a)

  18. Ding, L., McLaughlin, R.M.: Ergodicity and invariant measures for a diffusing passive scalar advected by a random channel shear flow and the connection between the Kraichnan-Majda model and Taylor-Aris dispersion. Physica D 432, 133118 (2022b). https://doi.org/10.1016/j.physd.2021.133118

    Article  MathSciNet  Google Scholar 

  19. Donati-Martin, C., Matsumoto, H., Yor, M.: On positive and negative moments of the integral of geometric Brownian motions. Stat. Probab. Lett. 49, 45–52 (2000)

    MathSciNet  Google Scholar 

  20. Dufresne, D.: Laguerre series for asian and other options. Math. Financ. 10, 407–428 (2000)

    MathSciNet  Google Scholar 

  21. Dufresne, D.: The integral of geometric Brownian motion. Adv. Appl. Probab. 33(1), 223–241 (2001)

    MathSciNet  Google Scholar 

  22. Elliott, R.J., Van Der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Financ. 13, 301–330 (2003)

    MathSciNet  Google Scholar 

  23. Gawedzki, K., Kupiainen, A.: University in turbulence: An exactly solvable model, in: Low-dimensional models in statistical physics and quantum field theory. Springer, pp. 71–105 (1996)

  24. Jain, R., Sebastian, K.: Diffusing diffusivity: a new derivation and comparison with simulations. J. Chem. Sci. 129, 929–937 (2017)

    Google Scholar 

  25. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer, New York (2009)

    Google Scholar 

  26. Kimura, Y., Kraichnan, R.H.: Statistics of an advected passive scalar. Phys. Fluids A 5, 2264–2277 (1993)

    ADS  MathSciNet  Google Scholar 

  27. Kirwin, W.D.: Higher asymptotics of Laplace’s approximation. Asymptot. Anal. 70, 231–248 (2010)

    MathSciNet  Google Scholar 

  28. Kraichnan, R.H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968)

    ADS  Google Scholar 

  29. Kraichnan, R.H.: Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72, 1016 (1994)

    ADS  Google Scholar 

  30. Majda, A.J.: Explicit inertial range renormalization theory in a model for turbulent diffusion. J. Stat. Phys. 73, 515–542 (1993)

    ADS  MathSciNet  Google Scholar 

  31. Majda, A.J.: The random uniform shear layer: an explicit example of turbulent diffusion with broad tail probability distributions. Phys. Fluids A 5, 1963–1970 (1993)

    ADS  MathSciNet  Google Scholar 

  32. Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237–574 (1999)

    ADS  MathSciNet  Google Scholar 

  33. Majda, A.J., Moore, M., Qi, D.: Statistical dynamical model to predict extreme events and anomalous features in shallow water waves with abrupt depth change. Proc. Natl. Acad. Sci. U.S.A. 116, 3982–3987 (2019)

    ADS  MathSciNet  Google Scholar 

  34. Matsumoto, H., Yor, M., et al.: Exponential functionals of Brownian motion, I: probability laws at fixed time. Probab. Surv. 2, 312–347 (2005a)

    MathSciNet  Google Scholar 

  35. Matsumoto, H., Yor, M., et al.: Exponential functionals of Brownian motion, ii: some related diffusion processes. Probab. Surv. 2, 348–384 (2005b)

    MathSciNet  Google Scholar 

  36. McCarty, P., Horsthemke, W.: Effective diffusion coefficient for steady two-dimensional convective flow. Phys. Rev. A 37, 2112 (1988)

    ADS  Google Scholar 

  37. McLaughlin, R.M.: Turbulent transport. Ph.D. thesis. Princeton University (1994)

  38. McLaughlin, R.M., Majda, A.J.: An explicit example with non-Gaussian probability distribution for nontrivial scalar mean and fluctuation. Phys. Fluids 8, 536–547 (1996)

    ADS  Google Scholar 

  39. Mercer, G., Roberts, A.: A centre manifold description of contaminant dispersion in channels with varying flow properties. SIAM J. Appl. Math. 50, 1547–1565 (1990)

    MathSciNet  Google Scholar 

  40. Molchanov, S.A.: Ideas in the theory of random media. Acta Appl. Math. 22, 139–282 (1991)

    MathSciNet  Google Scholar 

  41. Pomeau, Y.: Dispersion dans un écoulement en présence de zones de recirculation. C.R. l’Acad. Sci. Série 2 301, 1323–1326 (1985)

    Google Scholar 

  42. Pumir, A., Shraiman, B.I., Siggia, E.D.: Exponential tails and random advection. Phys. Rev. Lett. 66, 2984 (1991)

    ADS  Google Scholar 

  43. Resnick, S.G.: Dynamical problems in non-linear advective partial differential equations. Ph.D. thesis. The University of Chicago (1996)

  44. Shohat, J.A., Tamarkin, J.D.: The Problem of Moments, vol. 1. American Mathematical Society, Providence, RI (1943)

    Google Scholar 

  45. Sinai, Y.G., Yakhot, V.: Limiting probability distributions of a passive scalar in a random velocity field. Phys. Rev. Lett. 63, 1962 (1989)

    ADS  Google Scholar 

  46. Son, D.: Turbulent decay of a passive scalar in the Batchelor limit: Exact results from a quantum-mechanical approach. Phys. Rev. E 59, R3811 (1999)

    ADS  MathSciNet  Google Scholar 

  47. Stein, D., Doering, C.R., Plamer, R., Van Hemmen, J., McLaughlin, R.: Escape over a fluctuating barrier: the white noise limit. J. Phys. A 23, L203 (1990)

    MathSciNet  Google Scholar 

  48. Stein, D., Palmer, R., Van Hemmen, J., Doering, C.R.: Mean exit times over fluctuating barriers. Phys. Lett. A 136, 353–357 (1989)

    ADS  MathSciNet  Google Scholar 

  49. Stephen, M.J.: Temporal fluctuations in wave propagation in random media. Phys. Rev. B 37, 1 (1988)

    ADS  Google Scholar 

  50. Sukhatme, J.: Probability density functions of decaying passive scalars in periodic domains: an application of Sinai-Yakhot theory. Phys. Rev. E 69, 056302 (2004)

    ADS  MathSciNet  Google Scholar 

  51. Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A 219, 186–203 (1953)

    ADS  Google Scholar 

  52. Taylor, M.: Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete Contin. Dyn. Syst. B 17, 1261 (2012)

    MathSciNet  Google Scholar 

  53. Tyagi, N., Cherayil, B.J.: Non-gaussian Brownian diffusion in dynamically disordered thermal environments. J. Phys. Chem. B 121, 7204–7209 (2017)

    Google Scholar 

  54. Uneyama, T., Miyaguchi, T., Akimoto, T.: Relaxation functions of the ornstein-uhlenbeck process with fluctuating diffusivity. Phys. Rev. E 99, 032127 (2019)

    ADS  Google Scholar 

  55. Vanden Eijnden, E.: Non-Gaussian invariant measures for the Majda model of decaying turbulent transport. Commun. Pure Appl. Math. 54, 1146–1167 (2001)

    MathSciNet  Google Scholar 

  56. Vanneste, J.: Intermittency of passive-scalar decay: strange eigenmodes in random shear flows. Phys. Fluids 18, 087108 (2006)

    ADS  MathSciNet  Google Scholar 

  57. Vedel, S., Bruus, H.: Transient Taylor-Aris dispersion for time-dependent flows in straight channels. J. Fluid Mech. 691, 95–122 (2012)

    ADS  Google Scholar 

  58. Wang, W., Roberts, A.J.: Self-similarity and attraction in stochastic nonlinear reaction-diffusion systems. SIAM J. Appl. Dyn. Syst. 12, 450–486 (2013)

    MathSciNet  Google Scholar 

  59. Yakhot, V.: Large-scale properties of unstable systems governed by the Kuramoto-Sivashinksi equation. Phys. Rev. A 24, 642 (1981)

  60. Zel’Dovich, Y.B., Ruzmaikin, A., Molchanov, S., Sokoloff, D.: Kinematic dynamo problem in a linear velocity field. J. Fluid Mech. 144, 1–11 (1984)

Download references

Acknowledgements

We acknowledge funding received from the following National Science Foundation Grant Nos.:DMS-1910824; and Office of Naval Research Grant No: ONR N00014-18-1-2490. Partial support for Lingyun Ding is gratefully acknowledged from the National Science Foundation, award NSF-DMS-1929298 from the Statistical and Applied Mathematical Sciences Institute.

We thank the anonymous referee, whose comments improved the quality of the manuscript.

The calculation of the complete Picard iteration expansion in Sect. 3.3 is based on the unpublished short manuscript titled “White noise averaging and the time ordered calculus”, written by Jared C. Bronski and Richard M. McLaughlin in the 1990s. We would like to acknowledge Jared C. Bronski for his contributions to our manuscript by providing feedback on it. We would also like to express our appreciation to Andrew J. Majda for his comments and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. McLaughlin.

Ethics declarations

Conflicts of interest

There is no conflicts of interest.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., McLaughlin, R.M. Correlation Function of a Random Scalar Field Evolving with a Rapidly Fluctuating Gaussian Process. J Stat Phys 190, 201 (2023). https://doi.org/10.1007/s10955-023-03191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03191-7

Keywords

Mathematics Subject Classification

Navigation