Skip to main content
Log in

Multidimensional Lambert–Euler inversion and Vector-Multiplicative Coalescent Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we show the existence of the minimal solution to the multidimensional Lambert–Euler inversion, a multidimensional generalization of \([-e^{-1},0)\) branch of Lambert W function \(W_0(x)\). Specifically, for a given nonnegative irreducible symmetric matrix \(V \in \mathbb {R}^{k \times k}\) and a vector \(\textbf{u}\in (0,\infty )^k\), we show that, if the system of equations

$$\begin{aligned} y_j \exp \big \{-\textbf{e}_j^{\textsf {T}} V \textbf{y} \big \} = u_j \qquad \forall j=1,\ldots ,k, \end{aligned}$$

has at least one solution, it must have a minimal solution \(\textbf{y}^*\), where the minimum is achieved in all coordinates \(y_j\) simultaneously. Moreover, such \(\textbf{y}^*\) is the unique solution satisfying \(\rho \left( V D[y^*_j] \right) \le 1\), where \(D[y^*_j]=\textsf {diag}(y_j^*)\) is the diagonal matrix with entries \(y^*_j\) and \(\rho \) denotes the spectral radius. Our main application is in the analysis of the vector-multiplicative coalescent process. It is a coalescent process with k types of particles and k-dimensional vector-valued cluster weights representing the composition of a cluster by particle types. The clusters merge according to the vector-multiplicative kernel \(K(\textbf{x}, \textbf{y})=\textbf{x}^{\textsf {T}} V \textbf{y}\). First, we derive some new combinatorial results, and use them to solve the corresponding modified Smoluchowski equations obtained as a hydrodynamic limit of vector-multiplicative coalescent. Then, we use multidimensional Lambert–Euler inversion to establish gelation and find a closed form expression for the gelation time. We also find the asymptotic length of the minimal spanning tree for a broad range of graphs equipped with random edge lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Abramson, H.D.: A note on a result of Knuth or identities grow on trees. J. Combin. Theory 7(4), 371–373 (1969)

    Article  MathSciNet  Google Scholar 

  2. Beveridge, A., Frieze, A.M., McDiarmid, C.J.H.: Random minimum length spanning trees in regular graphs. Combinatorica 18(3), 311–333 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Struct. Algorithms 31(1), 3–122 (2007)

    Article  MathSciNet  Google Scholar 

  4. Cooper, C., Frieze, A., Ince, N., Janson, S., Spencer, J.: On the length of a random minimum spanning tree. Combin. Probab. Comput. 25, 89–107 (2016)

    Article  MathSciNet  Google Scholar 

  5. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  Google Scholar 

  6. Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986). (MR0838085)

    Book  Google Scholar 

  7. Euler, L.: De serie Lambertina Plurimisque eius insignibus proprietatibus. Acta Acad. Sci. Petropol. 2, 29–51 (1783)

    Google Scholar 

  8. Frieze, A.M.: On the value of a random minimal spanning tree problem. Discret. Appl. Math. 10(1), 47–56 (1985)

    Article  MathSciNet  Google Scholar 

  9. Huang, F., Liu, B.: The Abel-type polynomial identities. Electron. J. Combin. 17, R10 (2010)

    Article  MathSciNet  Google Scholar 

  10. Janson, S.: The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph. Random Struct. Algorithms 7(4), 335–337 (1995)

    Article  MathSciNet  Google Scholar 

  11. Jeon, I.: Existence of gelling solutions for coagulation-fragmentation equations. Commun. Math. Phys. 194, 541–567 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jeon, I.: Spouge’s conjecture on complete and instantaneous gelation. J. Stat. Phys. 96(5), 1049–1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kelmans, A., Postnikov, A.: Generalizations of Abel’s and Hurwitz’s identities. Eur. J. Combin. 29(7), 1535–1543 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme gefuhrt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  ADS  Google Scholar 

  15. Klee, S., Stamps, M.T.: Linear algebraic techniques for spanning tree enumeration. Am. Math. Mon. 127(4), 297–307 (2020)

    Article  MathSciNet  Google Scholar 

  16. Kovchegov, Y., Otto, P.T., Yambartsev, A.: Cross-multiplicative coalescent processes and applications. ALEA Lat. Am. J. Probab. Math. Stat. 18, 81–106 (2021)

    Article  MathSciNet  Google Scholar 

  17. Krapivsky, P.L., Ben-Naim, E.: Aggregation with multiple conservation laws. Phys. Rev. E 53(1), 291–298 (1996)

    Article  ADS  Google Scholar 

  18. Kurtz, T.G.: Approximation of Population Processes, vol. 36. SIAM, Philadelphia (1981)

  19. Lambert, J.H.: Observationes variae in mathesin puram. Acta Helveticae physico-mathematico-anatomico-botanico-medica, Band III, 128–168 (1758)

  20. Lewis, R.P.: The number of spanning trees of a complete multipartite graph. Discret. Math. 197(198), 537–541 (1999)

    Article  MathSciNet  Google Scholar 

  21. Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Oxford Classic Texts in the Physical Sciences, Oxford University Press, New York (1998). Reprint of the third (1891) edition

  22. McLeod, J.B.: On an infinite set of nonlinear differential equations. Q. J. Math. Oxf. Ser. (2) 13, 119–128 (1962)

    Article  Google Scholar 

  23. Pitman, J.: Forest volume decompositions and Abel–Cayley–Hurwitz multinomial expansions. J. Combin. Theory Ser. A 98(1), 175–191 (2002)

    Article  MathSciNet  Google Scholar 

  24. Rezakhanlou, F.: Gelation for Marcus–Lushnikov process. Ann. Probab. 41(3B), 1806–1830 (2013)

    Article  MathSciNet  Google Scholar 

  25. Söderberg, B.: General formalism for inhomogeneous random graphs. Phys. Rev. E 66, 066121 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. Spouge, J.L.: Solutions and critical times for the monodisperse coagulation equation when \(a(i, j)=A+B(i+j)+Cij\). J. Phys. A 16, 767–773 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. van Dongen, P., Ernst, M.: On the occurrence of a gelation transition in Smoluchowski coagulation equation. J. Stat. Phys. 44, 785–792 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  28. Vigil, R.D., Ziff, R.M.: On the scaling theory of two-component aggregation. Chem. Eng. Sci. 53(9), 1725–1729 (1998)

    Article  Google Scholar 

  29. Ziff, R.M.: Kinetics of polymerization. J. Stat. Phys. 23, 241–263 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Y.K. was supported in part by the NSF award DMS-1412557. The authors would like to thank the anonymous reviewers for their careful reading of our paper and their insightful and helpful comments.

Funding

This research was supported in part by NSF award DMS-1412557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. Otto.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Communicated by José Cañizo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovchegov, Y., Otto, P.T. Multidimensional Lambert–Euler inversion and Vector-Multiplicative Coalescent Processes. J Stat Phys 190, 188 (2023). https://doi.org/10.1007/s10955-023-03188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03188-2

Keywords

Mathematics Subject Classification

Navigation