Skip to main content
Log in

Inverse Littlewood–Offord Problems for Quasi-norms

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Given a compact star-shaped domain \(K\subseteq \mathbb {R}^d\), n vectors \(v_1,\ldots ,v_n \in \mathbb {R}^d\), a number \(R>0\), and i.i.d. random variables \(\eta _1,\dots ,\eta _n\), we study the geometric and arithmetic structure of the multi-set \(V = \{v_1,\ldots ,v_n\}\) under the assumption that the concentration function

$$\begin{aligned} \sup _{x\in \mathbb {R}^d}~\mathbb {P}\Big (\sum _{j=1}^n\eta _j v_j\in x+RK\Big ) \end{aligned}$$

does not decay too fast as \(n\rightarrow \infty \). This generalises the case where K is the Euclidean ball, which was previously studied in Nguyen and Vu (Adv Math 226(6):5298–5319, 2011) and Tao and Vu (Combinatorica 32(3):363–372, 2012), to the non-Euclidean settings, that is, to general norms and quasi-norms in \(\mathbb {R}^d\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K.: An Elementary Introduction to Modern Convex Geometry, Flavors of Geometry, Math. Sci. Res. Inst. Publ., 31. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  2. Cordero-Erausquin, D., Fradelizi, M., Maurey, B.: The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214(2), 410–427 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Erdös, P.: On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51, 898–902 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  4. Esseen, C.G.: On the Kolmogorov–Rogozin inequality for the concentration function. Z. Wahrscheinlichkeitstheor. Verw. Geb. 5, 210–216 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frankl, P., Füredi, Z.: Solution of the Littlewood–Offord problem in high dimensions. Ann. Math. (2) 128(2), 259–270 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedland, O., Guédon, O.: Random embedding of \(\ell ^n_p\) into \(\ell ^N_r\). Math. Ann. 350(4), 953–972 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedland, O., Sodin, S.: Bounds on the concentration function in terms of the Diophantine approximation. C. R., Math., Acad. Sci. Paris 345(9), 513–518 (2007). (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedland, O., Giladi, O., Guédon, O.: Small ball estimates for quasi-norms. J. Theor. Probab. 1–20 (2014)

  9. Nguyen, H., Vu, V.: Optimal inverse Littlewood–Offord theorems. Adv. Math. 226(6), 5298–5319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nguyen, H., Vu, V.: Small Ball Probability, Inverse Theorems, and Applications, pp. 409–463. Springer, Berlin (2013)

  11. Rudelson, M., Vershynin, R.: The Littlewood–Offord problem and invertibility of random matrices. Adv. Math. 218(2), 600–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Szemerédi, E., Vu, V.: Long arithmetic progressions in sumsets: thresholds and bounds. J. Am. Math. Soc. 19(1), 119–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tao, T.: Freiman’s theorem for solvable groups. Contrib. Discrete Math. 5(2), 137–184 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Tao, T., Vu, V.: Additive Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 105. Cambridge University Press, Cambridge (2006)

  15. Tao, T., Vu, V.: From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Am. Math. Soc. (N.S.) 46(3), 377–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tao, T., Vu, V.: A sharp inverse Littlewood–Offord theorem. Random Struct. Algorithms 37(4), 525–539 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tao, T., Vu, V.: The Littlewood–Offord problem in high dimensions and a conjecture of Frankl and Füredi. Combinatorica 32(3), 363–372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohad Giladi.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedland, O., Giladi, O. & Guédon, O. Inverse Littlewood–Offord Problems for Quasi-norms. Discrete Comput Geom 57, 231–255 (2017). https://doi.org/10.1007/s00454-016-9829-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9829-8

Keywords

Mathematics Subject Classification

Navigation