Skip to main content
Log in

Interpolation Between Modified Logarithmic Sobolev and Poincaré Inequalities for Quantum Markovian Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We define the quantum p-divergence and introduce Beckner’s inequalities for primitive quantum Markov semigroups on a finite-dimensional matrix algebra satisfying the detailed balance condition. Such inequalities quantify the convergence rate of the quantum dynamics in the noncommutative \(L_p\)-norm. We obtain a number of implications between Beckner’s inequalities and other quantum functional inequalities, as well as the hypercontractivity. In particular, we show that quantum Beckner’s inequalities interpolate between Sobolev-type inequalities and Poincaré inequality in a sharp way. We provide a uniform lower bound for the Beckner constant \(\alpha _p\) in terms of the spectral gap and establish the stability of \(\alpha _p\) with respect to the invariant state. As applications, we compute the Beckner constant for the depolarizing semigroup and discuss the mixing time. For symmetric quantum Markov semigroups, we derive the moment estimate, which further implies a concentration inequality. We introduce a new class of quantum transport distances \(W_{2,p}\) interpolating the quantum 2-Wasserstein distance by Carlen and Maas (J Funct Anal 273(5):1810–1869, 2017) and a noncommutative \({\dot{H}}^{-1}\) Sobolev distance. We show that the quantum Markov semigroup with \(\sigma \)-GNS detailed balance is the gradient flow of a quantum p-divergence with respect to the metric \(W_{2,p}\). We prove that the set of quantum states equipped with \(W_{2,p}\) is a complete geodesic space. We then consider the associated entropic Ricci curvature lower bound via the geodesic convexity of p-divergence, and obtain an HWI-type interpolation inequality. This enables us to prove that the positive Ricci curvature implies the quantum Beckner’s inequality, from which a transport cost and Poincaré inequalities can follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adamczak, R., Polaczyk, B., Strzelecki, M.: Modified log-Sobolev inequalities, Beckner inequalities and moment estimates. J. Funct. Anal. 282(7), 109349 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Alicki, R.: On the detailed balance condition for non-Hamiltonian systems. Rep. Math. Phys. 10(2), 249–258 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows. In Metric Spaces and in the Space of Probability Measures. Springer, New York (2005)

    MATH  Google Scholar 

  4. Amorim, É., Carlen, E.A.: Complete positivity and self-adjointness. Linear Algebra Appl. 611, 389–439 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Araki, H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19(2), 167–170 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Arnold, A., Bartier, J.-P., Dolbeault, J.: Interpolation between logarithmic Sobolev and Poincaré inequalities. Commun. Math. Sci. 5(4), 971–979 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Arnold, A., Carlen, E., Ju, Q.: Large-time behavior of non-symmetric Fokker-Planck type equations. Commun. Stoch. Anal. 2(1), 11 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift. arXiv preprint arXiv:1409.5425 (2014)

  9. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Equa. 26, 43–100 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Seminaire de Probabilités XIX 1983/84, pp. 177–206. Springer (1985)

  11. Bakry, D., Gentil, I., Ledoux, M., et al.: Analysis and Geometry of Markov Diffusion Operators, vol. 103. Springer, New York (2014)

    MATH  Google Scholar 

  12. Bardet, I.: Estimating the decoherence time using non-commutative functional inequalities. arXiv preprint arXiv:1710.01039 (2017)

  13. Bardet, I., Capel, A., Lucia, A., Pérez-García, D., Rouzé, C.: On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1d systems. J. Math. Phys. 62(6), 061901 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Barthe, F.: Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse 10(3), 393–404 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Beckner, W.: A generalized poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 397–400 (1989)

  16. Beigi, S.: Sandwiched rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Beigi, S., Datta, N., Rouzé, C.: Quantum reverse hypercontractivity: its tensorization and application to strong converses. Commun. Math. Phys. 376(2), 753–794 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Ben Efraim, L., Lust-Piquard, F.: Poincaré type inequalities on the discrete cube and in the car algebra. Probab. Theory Relat. Fields 141(3), 569–602 (2008)

    MATH  Google Scholar 

  19. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Benoist, T., Hänggli, L., Rouzé, C.: Deviation bounds and concentration inequalities for quantum noises. Quantum 6, 772 (2022)

    Google Scholar 

  21. Bhatia, R.: Matrix Analysis, vol. 169. Springer, New York (2013)

    MATH  Google Scholar 

  22. Birman, M.S., Solomyak, M.: Double operator integrals in a Hilbert space. Integr. Eqn. Oper. Theory 47(2), 131–168 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Bobkov, S.G., Tetali, P.: Modified logarithmic sobolev inequalities in discrete settings. J. Theor. Probab. 19(2), 289–336 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Boudou, A.-S., Caputo, P., Dai Pra, P., Posta, G.: Spectral gap estimates for interacting particle systems via a Bochner-type identity. J. Funct. Anal. 232(1), 222–258 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Brannan, M., Gao, L., Junge, M.: Complete logarithmic Sobolev inequality via Ricci curvature bounded below ii. J. Topol. Anal. 1–54 (2021)

  27. Brannan, M., Gao, L., Junge, M.: Complete logarithmic Sobolev inequalities via Ricci curvature bounded below. Adv. Math. 394, 108129 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Breuer, H.-P., Petruccione, F., et al.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  29. Brooks, M., Maas, J.: Characterisation of gradient flows for a given functional. arXiv preprint arXiv:2209.11149 (2022)

  30. Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207. Longman, Harlow (1989)

    MATH  Google Scholar 

  31. Cao, Y., Lu, J., Lu, Y.: Gradient flow structure and exponential decay of the sandwiched Rényi divergence for primitive Lindblad equations with GNS-detailed balance. J. Math. Phys. 60(5), 052202 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Capel, Á., Rouzé, C., França, D.S.: The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions. arXiv preprint arXiv:2009.11817 (2020)

  33. Caputo, P., Dai Pra, P., Posta, G.: Convex entropy decay via the Bochner-Bakry-Emery approach. Ann. l’IHP Prob. Stat. 45(3), 734–753 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Carlen, E.A., Maas, J.: An analog of the 2-wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy. Commun. Math. Phys. 331(3), 887–926 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Carlen, E.A., Maas, J.: Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance. J. Funct. Anal. 273(5), 1810–1869 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Carlen, E.A., Maas, J.: Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems. J. Stat. Phys. 178(2), 319–378 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Carrillo, J.A., Toscani, G.: Asymptotic l 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 113–142 (2000)

  38. Chafaï, D.: Entropies, convexity, and functional inequalities, on \(\phi \)-entropies and \(\phi \)-Sobolev inequalities. J. Math. Kyoto Univ. 44(2), 325–363 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Conforti, G.: A probabilistic approach to convex (\(\phi \))-entropy decay for Markov chains. Ann. Appl. Probab. 32(2), 932–973 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Cuevas, A.C.: Quantum logarithmic Sobolev inequalities for quantum many-body systems: an approach via quasi-factorization of the relative entropy. PhD thesis, Universidad Autónoma de Madrid (2019)

  41. Dai Pra, P., Paganoni, A.M., Posta, G.: Entropy inequalities for unbounded spin systems. Ann. Prob. 30(4), 1959–1976 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Daneri, S., Savaré, G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104–1122 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Datta, N.: Min-and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Datta, N., Rouzé, C.: Relating relative entropy, optimal transport and fisher information: a quantum HWI inequality. Ann. Henri Poincaré 21(7), 2115–2150 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  45. De Pagter, B., Sukochev, F.: Differentiation of operator functions in non-commutative LP-spaces. J. Funct. Anal. 212(1), 28–75 (2004)

    MathSciNet  MATH  Google Scholar 

  46. De Palma, G., Marvian, M., Trevisan, D., Lloyd, S.: The quantum Wasserstein distance of order 1. IEEE Trans. Inf, Theory (2021)

    MATH  Google Scholar 

  47. De Palma, G., Rouzé, C.: Quantum concentration inequalities. Ann. Henri Poincaré 23(9), 3391–3429 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Mat. Pures Appl. 81(9), 847–875 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Dietert, H.: Characterisation of gradient flows on finite state Markov chains. Electron. Commun. Probab. 20, 1–8 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Dolbeault, J., Nazaret, B., Savaré, G.: A new class of transport distances between measures. Calc. Var. Partial. Differ. Equ. 34(2), 193–231 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Dolbeault, J., Nazaret, B., Savaré, G.: From poincaré to logarithmic Sobolev inequalities: a gradient flow approach. SIAM J. Math. Anal. 44(5), 3186–3216 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Erbar, M., Fathi, M.: Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature. J. Funct. Anal. 274(11), 3056–3089 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206(3), 997–1038 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Fagnola, F., Umanità, V.: Generators of KMS symmetric Markov semigroups on \(\cal{B} (\rm h)\) symmetry and quantum detailed balance. Commun. Math. Phys. 298(2), 523–547 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Fathi, M., Maas, J.: Entropic Ricci curvature bounds for discrete interacting systems. Ann. Appl. Probab. 26(3), 1774–1806 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Faust, O., Fawzi, H.: Sum-of-squares proofs of logarithmic Sobolev inequalities on finite Markov chains. arXiv preprint arXiv:2101.04988 (2021)

  57. Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54(12), 122201 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Frigerio, A., Verri, M.: Long-time asymptotic properties of dynamical semigroups on \(w^*\)-algebras. Math. Z. 180(3), 275–286 (1982)

    MathSciNet  MATH  Google Scholar 

  59. Gao, L., Junge, M., LaRacuente, N.: Fisher information and logarithmic Sobolev inequality for matrix-valued functions. Ann. Henri Poincaré 21(11), 3409–3478 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Gao, L., Junge, M., LaRacuente, N., Li, H.: Complete order and relative entropy decay rates. arXiv preprint arXiv:2209.11684 (2022)

  61. Gao, L., Junge, M., Li, H.: Geometric approach towards complete logarithmic Sobolev inequalities. arXiv preprint arXiv:2102.04434 (2021)

  62. Gao, L., Rouzé, C.: Ricci curvature of quantum channels on non-commutative transportation metric spaces. arXiv preprint arXiv:2108.10609 (2021)

  63. Gao, L., Rouzé, C.: Complete entropic inequalities for quantum Markov chains. Arch. Ration. Mech. Anal. 1–56 (2022)

  64. Gentil, I., Zugmeyer, S.: A family of beckner inequalities under various curvature-dimension conditions. Bernoulli 27(2), 751–771 (2021)

    MathSciNet  MATH  Google Scholar 

  65. Gross, L.: Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form. Duke Math. J. 42(3), 383–396 (1975)

    MathSciNet  MATH  Google Scholar 

  66. Gu, J., Yin, Z., Zhang, H.: Interpolation of quasi noncommutative \( l_p \)-spaces. arXiv preprint arXiv:1905.08491 (2019)

  67. Hiai, F., Kosaki, H.: Means for matrices and comparison of their norms. Indiana Univ. Math. J. 899–936 (1999)

  68. Hiai, F., Kosaki, H., Petz, D., Ruskai, M.B.: Families of completely positive maps associated with monotone metrics. Linear Algebra Appl. 439(7), 1749–1791 (2013)

    MathSciNet  MATH  Google Scholar 

  69. Junge, M., Laracuente, N., Rouzé, C.: Stability of logarithmic Sobolev inequalities under a noncommutative change of measure. J. Stat. Phys. 190(2), 30 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  70. Junge, M., Wu, P.: Stability property for the quantum jump operators of an open system. arXiv preprint arXiv:2211.07527 (2022)

  71. Junge, M., Zeng, Q.: Noncommutative martingale deviation and Poincaré type inequalities with applications. Probab. Theory Relat. Fields 161(3), 449–507 (2015)

    MATH  Google Scholar 

  72. Jüngel, A., Yue, W.: Discrete beckner inequalities via the Bochner-Bakry-Emery approach for Markov chains. Ann. Appl. Probab. 27(4), 2238–2269 (2017)

    MathSciNet  MATH  Google Scholar 

  73. Kastoryano, M.J., Temme, K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54(5), 052202 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  74. King, C.: Hypercontractivity for semigroups of unital qubit channels. Commun. Math. Phys. 328, 285–301 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Latala, R., Oleszkiewicz, K.: Between Sobolev and Poincaré. In: Geometric Aspects of Functional Analysis, pp. 147–168. Springer (2000)

  76. Lesniewski, A., Ruskai, M.B.: Monotone Riemannian metrics and relative entropy on noncommutative probability spaces. J. Math. Phys. 40(11), 5702–5724 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Li, H.: Complete Sobolev type inequalities. arXiv preprint arXiv:2008.09278 (2020)

  78. Li, H., Junge, M., LaRacuente, N.: Graph hörmander systems. arXiv preprint arXiv:2006.14578 (2020)

  79. Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the schrödinger Hamiltonian and their relation to Sobolev inequalities. In: The Stability of Matter: From Atoms to Stars, pp 203–237. Springer (1997)

  80. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 903–991 (2009)

  81. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)

    MathSciNet  MATH  Google Scholar 

  82. Maas, J.: Entropic Ricci curvature for discrete spaces. In: Modern Approaches to Discrete Curvature, pp. 159–174. Springer (2017)

  83. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis. Mat. Contemp. 19, 1–29 (2000)

    MathSciNet  MATH  Google Scholar 

  84. Marton, K.: A simple proof of the blowing-up lemma (corresp.). IEEE Trans. Inf. Theory 32(3), 445–446 (1986)

  85. Marton, K.: Bounding \(\bar{d}\)-distance by informational divergence: a method to prove measure concentration. Ann. Probab. 24(2), 857–866 (1996)

    MathSciNet  MATH  Google Scholar 

  86. Molnár, L., Pitrik, J., Virosztek, D.: Maps on positive definite matrices preserving Bregman and Jensen divergences. Linear Algebra Appl. 495, 174–189 (2016)

    MathSciNet  MATH  Google Scholar 

  87. Montanaro, A., Osborne, T.J.: Quantum Boolean functions. arXiv preprint arXiv:0810.2435 (2008)

  88. Müller-Hermes, A., Franca, D.S.: Sandwiched Rényi convergence for quantum evolutions. Quantum 2, 55 (2018)

    Google Scholar 

  89. Müller-Hermes, A., Stilck França, D., Wolf, M.M.: Entropy production of doubly stochastic quantum channels. J. Math. Phys. 57(2), 022203 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  90. Müller-Hermes, A., Stilck França, D., Wolf, M.M.: Relative entropy convergence for depolarizing channels. J. Math. Phys. 57(2), 022202 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  91. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: A new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  92. Olkiewicz, R., Zegarlinski, B.: Hypercontractivity in noncommutative \(l_p\) spaces. J. Funct. Anal. 161(1), 246–285 (1999)

    MathSciNet  MATH  Google Scholar 

  93. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)

    MathSciNet  MATH  Google Scholar 

  94. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    MathSciNet  MATH  Google Scholar 

  95. Otto, F., Westdickenberg, M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005)

    MathSciNet  MATH  Google Scholar 

  96. Peyre, R.: Comparison between w2 distance and \(\dot{H}^{-1}\) norm, and localization of Wasserstein distance. ESAIM 24(4), 1489–1501 (2018)

    MathSciNet  MATH  Google Scholar 

  97. Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. Ec. Norm. Super. 19(1), 57–106 (1986)

    MathSciNet  MATH  Google Scholar 

  98. Potapov, D., Sukochev, F.: Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math. 207(2), 375–389 (2011)

    MathSciNet  MATH  Google Scholar 

  99. Raginsky, M., Sason, I. et al.: Concentration of measure inequalities in information theory, communications, and coding. Found. Trends® Commun. Inf. Theory, 10(1-2):1–246, (2013)

  100. Rellich, F., Berkowitz, J.: Perturbation Theory of Eigenvalue Problems. CRC Press, Boca Raton (1969)

    MATH  Google Scholar 

  101. Ricard, É., Xu, Q.: A noncommutative martingale convexity inequality. Ann. Probab. 44(2), 867–882 (2016)

    MathSciNet  MATH  Google Scholar 

  102. Rouzé, C., Datta, N.: Concentration of quantum states from quantum functional and transportation cost inequalities. J. Math. Phys. 60(1), 012202 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  103. Sturm, K.-T.: On the geometry of metric measure spaces I and II. Acta Math. 196(1), 65–177 (2006)

    MathSciNet  MATH  Google Scholar 

  104. Temme, K., Kastoryano, M.J., Ruskai, M.B., Wolf, M.M., Verstraete, F.: The \(\chi \) 2-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51(12), 122201 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  105. Temme, K., Pastawski, F., Kastoryano, M.J.: Hypercontractivity of quasi-free quantum semigroups. J. Phys. A 47(40), 405303 (2014)

    MathSciNet  MATH  Google Scholar 

  106. Vernooij, M., Wirth, M.: Derivations and KMS-symmetric quantum Markov semigroups. arXiv preprint arXiv:2303.15949 (2023)

  107. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Soc, Providence, RI (2003)

    MATH  Google Scholar 

  108. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, New York (2009)

    MATH  Google Scholar 

  109. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    MathSciNet  MATH  Google Scholar 

  110. Weber, F., Zacher, R.: The entropy method under curvature-dimension conditions in the spirit of bakry-émery in the discrete setting of markov chains. J. Funct. Anal. 281(5), 109061 (2021)

    MATH  Google Scholar 

  111. Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014)

    ADS  MATH  Google Scholar 

  112. Wirth, M.: A noncommutative transport metric and symmetric quantum Markov semigroups as gradient flows of the entropy. arXiv preprint arXiv:1808.05419 (2018)

  113. Wirth, M.: Christensen-Evans theorem and extensions of GNS-symmetric quantum Markov semigroups. arXiv preprint arXiv:2203.00341 (2022)

  114. Wirth, M.: A dual formula for the noncommutative transport distance. J. Stat. Phys. 187(2), 1–18 (2022)

    MathSciNet  MATH  Google Scholar 

  115. Wirth, M., Zhang, H.: Complete gradient estimates of quantum Markov semigroups. Commun. Math. Phys. 387(2), 761–791 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  116. Wirth, M., Zhang, H.: Curvature-dimension conditions for symmetric quantum Markov semigroups. Ann. Henri Poincaré 1–34 (2022)

  117. Zhang, H.: From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture. Adv. Math. 365, 107053 (2020)

    MathSciNet  MATH  Google Scholar 

  118. Zhang, H.: Optimal 2-uniform convexity of Schatten classes revisited. arXiv preprint arXiv:2011.00354 (2020)

  119. Zhang, H.: Some convexity and monotonicity results of trace functionals. arXiv preprint arXiv:2108.05785 (2021)

Download references

Funding

The work is supported in part by National Science Foundation via award CCF-1910571.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Li.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Bruno Nachtergaele.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Some Additional Preliminaries

1.1 A.1: Quantum \(\chi ^2\)-Divergence

In this appendix, we briefly recall the quantum \(\chi ^2\)-divergences introduced in [104]. For any \(\sigma \in \mathcal {D}_+(\mathcal {H})\) and \(\kappa : (0,\infty ) \rightarrow (0,\infty )\), we define the operator:

$$\begin{aligned} \Omega _\sigma ^\kappa = R_\sigma ^{-1} \kappa (\Delta _\sigma ):\ \mathcal {B}(\mathcal {H})\rightarrow \mathcal {B}(\mathcal {H})\,. \end{aligned}$$
(A.1)

Recalling \(J_\sigma ^f\) in (2.4), clearly there holds

$$\begin{aligned} (\Omega _\sigma ^\kappa )^{-1} = J_\sigma ^{1/\kappa }\,. \end{aligned}$$
(A.2)

The quantum \(\chi _\kappa ^2\)-divergence for \(\rho \in \mathcal {D}(\mathcal {H})\) and \(\sigma \in \mathcal {D}_+(\mathcal {H})\) is defined by

$$\begin{aligned} \chi _{\kappa }^2(\rho ,\sigma ) = \langle \rho - \sigma , \Omega _\sigma ^\kappa (\rho -\sigma )\rangle \,. \end{aligned}$$
(A.3)

To make the divergence \(\chi _{\kappa }^2(\cdot ,\cdot )\) have nice properties, we usually consider \(\kappa \) in the following functional class:

$$\begin{aligned} \mathcal {K} = \{\kappa : (0,\infty ) \rightarrow (0,\infty )\,;\ \kappa \ \text {is operator convex},\ x\kappa (x) = \kappa (x^{-1}),\ \kappa (1) = 1\}. \end{aligned}$$

For the purposes of this work, the following family of power difference means in \(\mathcal {K}\) is of particular interest [67]:

$$\begin{aligned} \kappa _\alpha = \frac{\alpha }{\alpha -1} \frac{x^{\alpha - 1} - 1}{x^{\alpha } - 1}\,, \quad \alpha \in [-1,2]\,. \end{aligned}$$
(A.4)

In fact, the kernel function of the operator \(J_\sigma ^{1/k}\) in (A.2) is given by

$$\begin{aligned} M_\alpha = y \kappa _\alpha ^{-1}(x/y) = \frac{\alpha - 1}{\alpha }\frac{x^\alpha - y^\alpha }{x^{\alpha - 1} - y^{\alpha - 1}}\,, \end{aligned}$$

which is the so-called A-L-G interpolation mean since \(M_\alpha \), for \(\alpha = -1\), \(\alpha = 1/2\), \(\alpha = 1\), and \(\alpha = 2\), gives the harmonic mean, the geometric mean, the logarithmic mean, and the arithmetic mean, respectively.

1.2 A.2: Noncommutative Calculus

In this appendix, following [12, 36], we review some fundamentals about noncommutative calculus associated with the derivation \(\partial _j\). Let \(A,B \in \mathcal {B}_{sa}(\mathcal {H})\) admit the spectral decompositions:

$$\begin{aligned} A = \sum _{i = 1}^{d}\lambda _i A_i\,,\quad B = \sum _{k=1}^{d} \mu _k B_k\,, \end{aligned}$$

where \(\lambda _i\) and \(\mu _k\) are eigenvalues of A and B, respectively; \(A_i\) and \(B_i\) are the associated rank-one spectral projections. For a function \(f \in C(I \times I)\) with I being a compact interval containing the spectra of A and B, we define the Schur multiplier (double sum operator) by [22, 45, 98]

$$\begin{aligned} f(A,B) = \sum _{i,k = 1}^{d} f(\lambda _i,\mu _k) L_{A_i}R_{B_k}\,, \end{aligned}$$
(A.5)

where \(C(I \times I)\) is the Banach space of complex-valued continuous functions on \(I \times I\). It was observed in [12] that given \(A,B \in \mathcal {B}_{sa}(\mathcal {H})\), f(AB) is \(*\)-representation between \(C(I \times I)\) and \(\mathcal {B}(\mathcal {B}(\mathcal {H}))\). Indeed, we have the following lemma from [12, Lemma 4.1] and [36, Lemma 6.6].

Lemma A.1

Let \(A,B \in \mathcal {B}_{sa}(\mathcal {H})\) and the compact interval I contain the spectra of A and B. It holds that

  1. 1.

    \(f(A,B)g(A,B) = (fg)(A,B)\) for \(f,g \in C(I \times I)\).

  2. 2.

    If \(f \in C(I \times I)\) is non-negative, then f(AB) is a positive semidefinite operator on \(B(\mathcal {H})\) with respect to the inner product \(\langle \cdot , \cdot \rangle \). It follows that if f is strictly positive, the sequilinear form \(\langle \cdot , f(A,B)(\cdot )\rangle \) defines an inner product on \(\mathcal {B}(\mathcal {H})\).

In this work, we mainly consider the case where f is the divided difference of some differentiable function \(\varphi \) on I:

$$\begin{aligned} \varphi ^{[1]}(\lambda ,\mu ) = {\left\{ \begin{array}{ll} \frac{\varphi (\lambda )-\varphi (\mu )}{\lambda -\mu }\,, \quad &{} \lambda \ne \mu \,, \\ \varphi '(\lambda )\,,\quad &{} \lambda = \mu \,, \end{array}\right. } \end{aligned}$$
(A.6)

which is closely related to the chain rule for \(\partial _j\) (cf. [12, Lemma 4.2] and [36, Proposition 6.2]).

Lemma A.2

Under the same assumption as in Lemma A.1, for any \(f: I \rightarrow \mathbb {C}\), we have, for \(V \in \mathcal {B}(\mathcal {H})\),

$$\begin{aligned} V f(B) - f(A) V = f^{[1]}(A,B)(V B - A V)\,. \end{aligned}$$
(A.7)

Then, by Lemma A.2, for a differentiable curve \(A(t): (a,b) \rightarrow \mathcal {B}(\mathcal {H})\) and function f, we have

$$\begin{aligned}&\frac{d}{d t} f(A(t)) = f^{[1]}(A(t),A(t))(A'(t))\,. \end{aligned}$$
(A.8)

We also need a multiple operator version of (A.8). We recall that for a differentiable function \(\varphi : \mathbb {R}^n \rightarrow \mathbb {C}\), the partial divided difference \(\delta _j \varphi : \mathbb {R}^{n+1} \rightarrow \mathbb {C}\) with respect to the variable \(x_j\) is defined by

$$\begin{aligned} (\delta _{j} \varphi )(x_1,\ldots ,x_{j-1},(\lambda ,\mu ),x_{j+1},\ldots ,x_n)= \left( \varphi (x_1,\ldots ,x_{j-1},\cdot ,x_{j+1},\ldots ,x_n)\right) ^{[1]}(\lambda ,\mu )\,. \end{aligned}$$
(A.9)

Let \(A^{(k)}\), \(k = 1,\ldots ,n\), be self-adjoint operators with the spectral decompositions: \(A_i = \sum _{i} \lambda _{i}^{(k)}A_{i}^{(k)}\), where \(\lambda _i^{(k)}\) are eigenvalues and \(A_{i}^{(k)}\) are the associated rank-one spectral projections. For a function \(\varphi : I \times \cdots \times I \rightarrow \mathbb {C}\) with the interval I containing the spectra of \(A^{(i)}\), the multiple operator sum is defined as:

$$\begin{aligned} \varphi (A_1,\ldots ,A_n) = \sum _{i_1,\cdots ,i_n = 1}^{d} \varphi (\lambda ^{(1)}_{i_1},\cdots ,\lambda ^{(n)}_{i_n})A_{i_1}^{(1)}\otimes \cdots \otimes A_{i_n}^{(n)}. \end{aligned}$$
(A.10)

The following chain rule from [36, Proposition 6.8] shall be useful in the expression of the geodesic equations for the generalized quantum transport distance.

Lemma A.3

Let the curves \(A_t, B_t: (a,b) \rightarrow \mathcal {B}_{sa}(\mathcal {H})\) be differentiable, and let \(\varphi : I \times I \rightarrow \mathbb {C}\) be differentiable with I containing the spectra of \(A_t\) and \(B_t\) for all \(t \in (a,b)\). Then there holds

$$\begin{aligned} \partial _t \varphi (A_t,B_t)(\cdot ) = (\delta _1 \varphi ) ((A_t,A_t),B_t)[\partial _t A_t, \cdot ] + (\delta _2 \varphi )(A_t,(B_t,B_t))[\cdot , \partial _t B_t]. \end{aligned}$$

Appendix B: Note on the Detailed Balance Condition

Noting (4.13), it follows from Lemma 2.2 that the QMS satisfying \(\sigma \)-GNS DBC is also self-adjoint with respect to the inner product \( \langle \cdot , \cdot \rangle _{[\sigma ]_{p,0}}\). In this appendix, we modify the discussions in [36, Appendix B] and [20, Appendix B] to show that the \([\sigma ]_{p,0}\)-DBC, for \(p \in (1,2)\), and KMS DBC are not comparable, and that there exists a primitive QMS satisfying \([\sigma ]_{p,0}\)-DBC but not \(\sigma \)-GNS DBC.

Let \(\{\left| 0\right\rangle ,\left| 1\right\rangle \}\) be the standard basis of \(\mathbb {C}^2\), and \(\left| v_1\right\rangle = \frac{1}{\sqrt{2}}(\left| 0\right\rangle + \left| 1\right\rangle )\) and \(\left| v_2\right\rangle = \frac{1}{\sqrt{5}}(\left| 0\right\rangle + 2\left| 1\right\rangle )\) be an another basis of \(\mathbb {C}^2\). We define the quantum channel \(\Phi (X) = K_1^* X K_1 + K_2^* X K_2\) with \(K_1 = \left| v_1\right\rangle \left\langle 0\right| \) and \(K_2 = \left| v_2\right\rangle \left\langle 1\right| \). It is easy to see that the associated unique invariant state of \(\Phi ^\dag \) is

$$\begin{aligned} \sigma = \frac{1}{7}\left[ \begin{matrix} 2 &{} 3 \\ 3 &{} 5 \end{matrix} \right] , \end{aligned}$$

and the spectrum of \(\Phi ^\dag \) is given by \(\{1, \frac{3}{10}, 0\}\) with 0 of multiplicity two. We denote by \(\Phi ^{\dagger }_{\textrm{KMS}}\) the adjoint of \(\Phi \) with respect to the KMS inner product and define \(\Psi = \Phi ^\dag _{\textrm{KMS}} \Phi \), which is also a quantum channel with \(\Psi ^\dag (\sigma ) = \sigma \) but satisfying the KMS DBC. Note that for a linear map \(\Phi \) on \(\mathcal {B}(\mathcal {H})\) satisfying both \([\sigma ]_{p,0}\)-DBC and KMS DBC, there holds \(g(\Delta _\sigma ) \circ \Phi = \Phi \circ g(\Delta _\sigma )\), where \(g(x) = \kappa _{1/p}(x) x^{1/2}\) and \(g(\Delta _\sigma ) = [\sigma ]_{p,0}^{-1} \Gamma _\sigma \). By definition (A.4), we have \(g(1/x) = g(x)\). Then, by exactly the same argument as in [20, Appendix B], we can show that the operator \(\Psi \) defined above does not commute with \(g(\Delta _\sigma )\) and hence the Lindbladian \(\Psi - \textrm{id}\) satisfies the KMS DBC but not \([\sigma ]_{p,0}\)-DBC.

We next consider \(\widetilde{\Psi }:= [\sigma ]_{p,0}^{-1} \circ \Psi ^\dag \circ \Gamma _\sigma \), which is a quantum channel, since the operator \([\sigma ]_{p,0}^{-1}\) is completely positive for \(p \in (1,2)\) by [68, Example 4.7]. Then we can check from definition that \(\widetilde{\Psi }\) satisfies the \([\sigma ]_{p,0}\)-DBC. Again, since \(\Psi \) defined above does not commute with \(g(\Delta _\sigma )\), neither does \(\widetilde{\Psi }\). Hence, the Lindbladian \(\widetilde{\Psi } - \textrm{id}\) satisfies \([\sigma ]_{p,0}\)-DBC but not KMS DBC.

We conclude with an example of a primitive QMS with \([\sigma ]_{p,0}\)-DBC but not \(\sigma \)-GNS DBC. The construction is modified from [20] as well. We define, for some \(\eta \in (0,1/2)\),

$$\begin{aligned} K_1 = \left[ \begin{array}{ll} \sqrt{\eta } &{} 0 \\ 0 &{} \sqrt{1 - \eta } \end{array} \right] \,,\quad K_2 = \left[ \begin{array}{ll} 0 &{} \sqrt{\eta } \\ \sqrt{1 - \eta } &{} 0 \end{array} \right] \,, \end{aligned}$$

and the associated quantum channel \(\Phi (X) = K_1^* X K_1 + K_2^* X K_2\), which has the unique invariant state:

$$\begin{aligned} \sigma = \left[ \begin{matrix} \eta &{} 0 \\ 0 &{} 1 - \eta \end{matrix} \right] . \end{aligned}$$

It is direct to verify \([\sigma ]_{p,0}^{-1} \circ \Phi ^\dag = \Phi \circ [\sigma ]_{p,0}^{-1}\), i.e., \(\Phi \) satisfies the \([\sigma ]_{p,0}\)-DBC. However, it was shown in [20] that \(\sigma \)-GNS DBC does not hold for \(\Phi \). It follows that the generator \(\Phi - \textrm{id}\) is the desired example.

Appendix C: Beckner’s Inequality for Non-primitive QMS

In this appendix, we introduce p-Beckner’s inequality with \(p \in (1,2]\) for the non-primitive QMS and show that it holds for any QMS satisfying GNS DBC, which extends [63, Theorem 3.3] for MLSI.

Let \(\mathcal {P}_t = e^{t \mathcal {L}}\) be a non-primitive QMS with a full-rank invariant state \(\sigma \in \mathcal {D}_+(\mathcal {H})\), which may be non-unique. We introduce the fixed-point algebra \(\mathcal {F}:= \left\{ X \in \mathcal {B}(\mathcal {H});\ \forall t \ge 0,\, \mathcal {P}_t(X) = X \right\} \), and denote the associated conditional expectation by \(E_\mathcal {F}\). It is known from [58, 63] that \(E_\mathcal {F} \mathcal {P}_t = \mathcal {P}_t E_\mathcal {F} = E_\mathcal {F}\) and for \(X \in \mathcal {B}(\mathcal {H})\),

$$\begin{aligned} \lim _{t \rightarrow \infty } \mathcal {P}_t (X - E_{\mathcal {F}}(X)) = \lim _{t \rightarrow \infty } \mathcal {P}_t (X) - E_{\mathcal {F}}(X) = 0\,. \end{aligned}$$
(C.1)

Similarly, Beckner’s inequality quantifies the convergence rate of (C.1) in terms of the p-divergence (3.1). We consider QMS that satisfies \(\sigma \)-GNS DBC as in Definition 2.1, which is well-defined since the self-adjointness of \(\mathcal {L}\) with respect to \(\langle \cdot ,\cdot \rangle _{\sigma ,1}\) is independent of the choice of invariant state \(\sigma \); see [63, Lemma 2.6]. We compute the entropy production of \(\mathcal {F}_{p,\sigma }(\rho )\) as in (3.16): for \(\rho _t = \mathcal {P}_t^\dag (\rho )\) with \(\rho \in \mathcal {D}_+(\mathcal {H})\),

$$\begin{aligned} \frac{d}{dt}\Big |_{t = 0} \mathcal {F}_{p,E_\mathcal {F}^\dag (\rho )}(\rho _t) = -\frac{4}{p^2} \mathcal {E}_{p,\mathcal {L}}(X)\,,\quad X = \Gamma _{E_\mathcal {F}^\dag (\rho )}^{-1}(\rho ) \,, \end{aligned}$$

where \(\mathcal {E}_{p,\mathcal {L}}\) is given in (2.17) with \(\sigma = E_\mathcal {F}^\dag (\rho )\). Hence, we can define the non-primitive Beckner’s inequality as (3.18): for some \(\alpha _p > 0\) and any \(\rho \in \mathcal {D}_+(\mathcal {H})\),

$$\begin{aligned} \alpha _p \mathcal {F}_{p,E_{\mathcal {F}}^\dag (\rho )}(\rho ) \le p^{-2} \mathcal {E}_{p,\mathcal {L}}\big (\Gamma _{E_\mathcal {F}^\dag (\rho )}^{-1}(\rho )\big )\,, \end{aligned}$$
(C.2)

which is equivalent to the exponential convergence: \( \mathcal {F}_{p,E_{\mathcal {F}}^\dag (\rho )} (\mathcal {P}_t^\dag (\rho )) \le e^{- 4 \alpha _p t} \mathcal {F}_{p,E_{\mathcal {F}}^\dag (\rho )}(\rho )\).

We introduce the subalgebra index for the fixed-point algebra \(\mathcal {F}\) by

$$\begin{aligned} C(E_\mathcal {F}) = \inf \big \{c> 0 \,;\ \rho \le c E_{\mathcal {F}}^\dag (\rho )\,,\ \forall \rho \in \mathcal {D}(\mathcal {H})\big \}\,, \end{aligned}$$
(C.3)

which is finite in the finite-dimensional setting [97, Theorem 6.1]. For a primitive QMS with the unique invariant state \(\sigma \in \mathcal {D}_+(\mathcal {H})\), the index (C.3) reduces to

$$\begin{aligned} C(\sigma )&:= \inf \{c > 0\,;\ \rho \le c \sigma \ \, \text {for all}\ \rho \in \mathcal {D}(\mathcal {H}) \}\,, \end{aligned}$$
(C.4)

which is closely related to the max-relative entropy \(D_{\infty }\) in (2.32) and can be explicitly represented by (2.33),

$$\begin{aligned} C(\sigma ) = \sup _{\rho \in \mathcal {D}(\mathcal {H})} \exp \left( D_{\infty }(\rho \Vert \sigma ) \right) = \sigma _{\min }^{-1}\,. \end{aligned}$$
(C.5)

We also recall the spectral gap (Poincaré constant) \(\lambda (\mathcal {L})\) for a non-primitive Lindbladian \(\mathcal {L}\):

$$\begin{aligned} \lambda (\mathcal {L}) = \inf _{X \in \mathcal {B}(\mathcal {H})} \frac{-\langle X, \mathcal {L}(X) \rangle _{\sigma ,f}}{\left\Vert X - E_\mathcal {F}(X) \right\Vert _{\sigma ,f}^2}\,, \end{aligned}$$

for an invariant state \(\sigma \in \mathcal {D}_+(\mathcal {H})\) and function \(f:(0,\infty ) \rightarrow (0,\infty )\), where the inner product \(\langle \cdot ,\cdot \rangle _{\sigma ,f}\) is given in (2.5). It was proved in [63, Lemma 3.2] that \(\lambda (\mathcal {L})\) is independent of the choice of \(\sigma \) and f. We are now prepared to give the following result.

Theorem C.1

Let \(\mathcal {P}_t = e^{t \mathcal {L}}\) be a QMS satisfying \(\sigma \)-GNS DBC for some \(\sigma \in \mathcal {D}_+(\mathcal {H})\). Then the Beckner’s inequality (C.2) holds for all \(p \in (1,2]\) with constant \(\alpha _p(\mathcal {L})\) satisfying the estimate:

$$\begin{aligned} \alpha _p(\mathcal {L}) \ge \frac{p}{4} C(E_\mathcal {F})^{p-2} \lambda (\mathcal {L})\,. \end{aligned}$$
(C.6)

Proof

We consider the relative density \(X = \Gamma _{E_\mathcal {F}^\dag (\rho )}^{-1}(\rho )\) for \(\rho \in \mathcal {D}_+(\mathcal {H})\) and then have

$$\begin{aligned}&p^2 \mathcal {F}_{p,E_{\mathcal {F}}^\dag (\rho )}(\rho ) \nonumber \\&= \frac{p}{p-1}\big (\left\Vert X \right\Vert _{p,E_{\mathcal {F}}^\dag (\rho )}^p - 1\big ) \le p \left\Vert X - \textbf{1} \right\Vert _{E_{\mathcal {F}}^\dag (\rho ),\varphi _p}^2 \le - \lambda (\mathcal {L})^{-1} p \langle X, \mathcal {L} X \rangle _{E_{\mathcal {F}}^\dag (\rho ),\varphi _p}, \end{aligned}$$
(C.7)

by using \(E_{\mathcal {F}}^\dag \Gamma _\sigma = \Gamma _\sigma E_\mathcal {F}\) for any invariant state \(\sigma \) and the upper estimate in (3.12). By definition (C.3) and formulas (2.19) and (3.10), it follows from Lemma 3.2 that

$$\begin{aligned}&- \left\langle X, \mathcal {L} X \right\rangle _{\sigma ,\varphi _p}\nonumber \\&= \left\langle \Gamma _\sigma ^{1/p} \big (\partial _j X \big ), f_p^{[1]}\left( e^{\omega _j/2p}\sigma ^{1/p}, e^{-\omega _j/2p}\sigma ^{1/p}\right) \Gamma _\sigma ^{1/p} \big (\partial _j X\big ) \right\rangle \nonumber \\&\le C(E_{\mathcal {F}})^{2-p} \left\langle \Gamma _\sigma ^{1/p} \big (\partial _j X\big ), f_p^{[1]}\left( e^{\omega _j/2p} \Gamma _\sigma ^{1/p}(X), e^{-\omega _j/2p} \Gamma _\sigma ^{1/p}(X) \right) \Gamma _\sigma ^{1/p}\big (\partial _j X\big ) \right\rangle \nonumber \\&\le 4 p^{-2} C(E_{\mathcal {F}})^{2-p} \mathcal {E}_{p,\mathcal {L}}(X)\,, \end{aligned}$$
(C.8)

where \(\sigma = E_{\mathcal {F}}^\dag (\rho )\) and \(X = \Gamma _{E_\mathcal {F}^\dag (\rho )}^{-1}(\rho )\). Therefore, by (C.7) and (C.8), we obtain

$$\begin{aligned} p^2 \mathcal {F}_{p,E_{\mathcal {F}}^\dag (\rho )}(\rho ) \le \frac{4}{p \lambda (\mathcal {L})} C(E_{\mathcal {F}})^{2-p} \mathcal {E}_{p,\mathcal {L}}\big (\Gamma _{E_\mathcal {F}^\dag (\rho )}^{-1}(\rho )\big ). \end{aligned}$$

The proof is complete by (C.2). \(\square \)

Remark C.2

If \(\mathcal {P}_t\) in Theorem C.1 is primitive, then we have \(\alpha _p \ge p\,\sigma _{\min }^{2-p} \lambda /4\), which is asymptotically worse than the one in (3.43) for fixed \(\sigma _{\min } \le 1/2\) and p close to 1 or fixed \(p \in (1,2]\) and small enough \(\sigma _{\min }\).

Remark C.3

When \(p \rightarrow 1^+\), the lower bound (C.6) reduces to the one in [63, Theorem 3.3] for MLSI constant, which has been improved very recently in [60, Theorem 4.18] by Gao et al. with a logarithmic dependence on the complete version of subalgebra index. One may hence expect a similar improvement for \(\alpha _p(\mathcal {L})\) as well, which we leave for future investigation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Lu, J. Interpolation Between Modified Logarithmic Sobolev and Poincaré Inequalities for Quantum Markovian Dynamics. J Stat Phys 190, 161 (2023). https://doi.org/10.1007/s10955-023-03173-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03173-9

Keywords

Navigation