Skip to main content
Log in

Local Central Limit Theorem for Long-Range Two-Body Potentials at Sufficiently High Temperatures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Dobrushin and Tirozzi (Commun Math Phys 54(2):173–192, 1977) showed that, for a Gibbs measure with the finite-range potential, the Local Central Limit Theorem is implied by the Integral Central Limit Theorem. Campanino et al. (Commun Math Phys 70(2):125–132, 1979) extended this result for a family of Gibbs measures for long-range pair potentials satisfying certain conditions. We are able to show for a family of Gibbs measures for long-range pair potentials not satisfying the conditions given in Campanino et al. (Commun Math Phys 70(2):125–132, 1979) , that at sufficiently high temperatures, if the Integral Central Limit Theorem holds for a given sequence of Gibbs measures, then the Local Central Limit Theorem also holds for the same sequence. We also extend (Campanino et al. in Commun Math Phys 70(2):125–132, 1979) to the case when the state space is general, provided that it is equipped with a finite measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aizenman, M., Fernández, R.: On the critical behavior of the magnetization in high-dimensional Ising models. J. Stat. Phys. 44(3–4), 393–454 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Chayes, J., Chayes, L., Newman, C.: Discontinuity of the magnetization in the one-dimensional \(1/{|x-y|}^2\) percolation, Ising and Potts models. J. Stat. Phys. 50(1), 1–40 (1988)

    Article  ADS  MATH  Google Scholar 

  3. Aizenman, M., Duminil-Copin, H., Sidoravicius, V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334, 719–742 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Arzumanian, V.A., Nakhapetian, B.S., Pogosyan, S.K.: Local limit theorem for the particle number in spin lattice systems. Theor. Math. Phys. 89(2), 1138–1146 (1991)

    Article  Google Scholar 

  5. Berry, A.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Am. Math. Soc. 49(1), 122–136 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolthausen, E.: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10, 1047–1050 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Campanino, M., Capocaccia, D., Tirozzi, B.: The local central limit theorem for a Gibbs random field. Commun. Math. Phys. 70(2), 125–132 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Campanino, M., Del Grosso, G., Tirozzi, B.: Local limit theorem for Gibbs random fields of particles and unbounded spins. J. Math. Phys. 20(8), 1752–1758 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cox, T., Grimmett, G.: Central limit theorems for percolation models. J. Stat. Phys. 25(2), 237–251 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Cox, T., Grimmett, G.: Central limit theorems for associated random variables and the percolation model. Ann. Probab. 12, 514–528 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Coninck, J.: Gaussian fluctuations for the magnetization of Lee-Yang ferromagnets at zero external field. J. Stat. Phys. 47(3), 397–407 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  12. Del Grosso, G.: On the local central limit theorem for Gibbs processes. Commun. Math. Phys. 37(2), 141–160 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dobrushin, R.L.: The description of the random field by its conditional distributions and its regularity conditions. Theor. Probab. Appl. 13(2), 197–224 (1968)

    Article  MATH  Google Scholar 

  14. Dobrushin, R.L., Tirozzi, B.: The central limit theorem and the problem of equivalence of ensembles. Commun. Math. Phys. 54(2), 173–192 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dyson, F.J.: Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91–107 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Esseen, C.-G.: On the Liapunoff limit of error in the theory of probability. Ark. Mat. Astron. Fys. A 28, 1–19 (1942)

    MATH  Google Scholar 

  17. Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274(1), 123–140 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fleermann, M., Kirsch, W., Toth, G.: Local central limit theorem for multi-group Curie–Weiss models. J. Theor. Probab. (2021). https://doi.org/10.1007/s10959-021-01122-4

    Article  MATH  Google Scholar 

  19. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  21. Fröhlich, J., Spencer, T.: The phase transition in the one-dimensional Ising model with \(1/r^2\) interaction energy. Commun. Math. Phys. 84, 87–101 (1982)

    Article  ADS  MATH  Google Scholar 

  22. Gallavotti, G., Jona-Lasinio, G.: Limit theorems for multidimensional Markov processes. Commun. Math. Phys. 41(3), 301–307 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Gallavotti, G., Martin-Löf, A.: Block-spin distributions for short-range attractive Ising models. Il Nuovo Cimento B (1971–1996) 25(1), 425–441 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  24. Georgii, H.-O.: Canonical and grand canonical Gibbs states for continuum systems. Commun. Math. Phys. 48(1), 31–51 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gnedenko, B.V.: The Theory of Probability, 6th edn. CRC Press, Boca Raton (1998)

    Google Scholar 

  26. Götze, F., Hipp, C.: Local Limit Theorems for sums of finite range potentials of a Gibbsian random field. Ann. Probab. 18(2), 810–828 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hegerfeldt, G., Nappi, C.: Mixing properties in lattice systems. Commun. Math. Phys. 53(1), 1–7 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hilhorst, H.J.: Central limit theorems for correlated variables: some critical remarks. Braz. J. Phys. 39(2A), 371–379 (2009)

    Article  ADS  Google Scholar 

  29. Iagolnitzer, D., Souillard, B.: Lee-Yang theory and normal fluctuations. Phys. Rev. B 19(3), 1515 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  30. Iagolnitzer, D., Souillard, B.: Random fields and limit theorems. In: Fritz, J., Lebowitz, J.I., Szasz, D. (eds.) Random Fields. Colloquia Mathematica Societatis Janos Bolyai, vol. 27. North-Holland, Amsterdam (1979)

    Google Scholar 

  31. Künsch, H.: Decay of correlations under Dobrushin’s uniqueness condition and its applications. Commun. Math. Phys. 84, 207–222 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Malyshev, V.: A central limit theorem for Gibbsian random fields. Russ. Acad. Sci. 224, 1 (1975)

    MathSciNet  Google Scholar 

  33. Martin-Löf, A.: Mixing properties, differentiability of the free energy and the central limit theorem for a pure phase in the Ising model at low temperature. Commun. Math. Phys. 32(1), 75–92 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  34. Nahapetian, B.: Limit Theorems and Some Applications in Statistical Physics. Teubner-Texte zur Mathematik, Leipzig (1991)

    Book  MATH  Google Scholar 

  35. Nakhapetyan, B.: The central limit theorem for random fields with mixing conditions. Adv. Probab. 6, 531–548 (1980)

    Google Scholar 

  36. Neaderhouser, C.: Limit theorems for multiply indexed mixing random variables, with application to Gibbs random fields. Ann. Probab. 6(2), 207–215 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  37. Neaderhouser, C.: Some limit theorems for random fields. Commun. Math. Phys. 61(3), 293–305 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Neaderhouser, C.: Convergence of block spins defined by a random field. J. Stat. Phys. 22(6), 673–684 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  39. Neaderhouser, C.: An almost sure invariance principle for partial sums associated with a random field. Stoch. Process. Appl. 11(1), 1–10 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  40. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74(2), 119–128 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Newman, C.M.: A general central limit theorem for FKG systems. Commun. Math. Phys. 91(1), 75–80 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Newman, C.M., Wright, A.: An invariance principle for certain dependent sequences. Ann. Probab. 9(4), 671–675 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Newman, C.M., Wright, A.: Associated random variables and martingale inequalities. Z. Wahrscheinlichkeitstheorie verwandte Gebiete 59(3), 361–371 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pickard, D.: Asymptotic inference for an Ising lattice. J. Appl. Probab. 13(3), 486–497 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  45. Röllin, A., Ross, N.: Local limit theorems via Landau–Kolmogorov inequalities. Bernoulli 21(2), 851–880 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, W.: Local central limit theorem for gradient field models. Preprint at arXiv:2202.13578 (2022)

  47. Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85(5), 808–816 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to kindly thank Roberto Fernández and Tong Xuan Nguyen for very useful discussions. We thank the referees and Aernout van Enter for their suggestions that helped us clarify our manuscript. Also, both authors would like to acknowledge the support of the NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai.

Funding

No funds, grants, or other support was received beyond acknowledgements of NYU Shanghai. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric O. Endo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by Yvan Velenik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, E.O., Margarint, V. Local Central Limit Theorem for Long-Range Two-Body Potentials at Sufficiently High Temperatures. J Stat Phys 189, 34 (2022). https://doi.org/10.1007/s10955-022-02994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02994-4

Keywords

Mathematics Subject Classification

Navigation