Skip to main content
Log in

Central limit theorems for percolation models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Letp ≠ 1/2 be the open-bond probability in Broadbent and Hammersley's percolation model on the square lattice. LetW x be the cluster of sites connected tox by open paths, and letγ(n) be any sequence of circuits with interiors\(|\mathop \gamma \limits^ \circ (n)| \to \infty \). It is shown that for certain sequences of functions {f n },\(S_n = \sum _{x \in \mathop \gamma \limits^ \circ (n)} f_n (W_x )\) converges in distribution to the standard normal law when properly normalized. This result answers a problem posed by Kunz and Souillard, proving that the numberS n of sites insideγ(n) which are connected by open paths toγ(n) is approximately normal for large circuitsγ(n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bramson and D. Griffeath, Renormalizing the 3-dimensional voter model,Ann. Prob. 7:418–432 (1979).

    Google Scholar 

  2. S. R. Broadbent and J. M. Hammersley, Percolation processes I and II,Proc. Cambridge Philos. Soc. 53:629–641, 642–645 (1957).

    Google Scholar 

  3. C. M. Fortuin, On the random cluster model, II: The percolation model,Physica 58:393–418 (1972).

    Google Scholar 

  4. C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971).

    Google Scholar 

  5. G. R. Grimmett, On the number of clusters in the percolation model,J. London Math. Soc. Ser. 2 13:346–350 (1976).

    Google Scholar 

  6. G. R. Grimmett, On the differentiability of the number of clusters per vertex in the percolation model, preprint (1980).

  7. H. Kesten, On the time constant and path length of first-passage percolation,Adv. Appl. Prob. 12:846–865 (1980).

    Google Scholar 

  8. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2,Commun. Math. Phys. 74:41–59 (1980).

    Google Scholar 

  9. A. Kleinerman, Limit theorems for infinitely divisible random fields, Ph.D. thesis, Cornell University (1977).

  10. H. Kunz and B. Souillard, Essential singularity in percolation problems and asymptotic behavior of cluster size distribution,J. Stat. Phys. 19:77–106 (1978).

    Google Scholar 

  11. J. L. Lebowitz, Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems,Commun. Math. Phys. 28:313–321 (1972).

    Google Scholar 

  12. V. A. Malyšev, The central limit theorem for Gibbsian random fields,Sov. Math. Dokl. 16:1141–1145 (1975).

    Google Scholar 

  13. C. Neaderhouser, Limit theorems for multiply indexed mixing random variables, with applications to Gibbs random fields,Ann. Prob. 6:207–215 (1978).

    Google Scholar 

  14. L. Russo, A note on percolation,Z. Wahrscheinlichkeitstheorie Verw. Geb. 43:39–48 (1978).

    Google Scholar 

  15. R. T. Smythe and J. C. Wierman, First-passage percolation on the square lattice,Lecture Notes in Mathematics No. 671 (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  16. P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice,Ann. Discrete Math. 3:227–245 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, J.T., Grimmett, G. Central limit theorems for percolation models. J Stat Phys 25, 237–251 (1981). https://doi.org/10.1007/BF01022185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022185

Key words

Navigation