Skip to main content
Log in

On the Statistical Stability of Families of Attracting Sets and the Contracting Lorenz Attractor

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present criteria for statistical stability of attracting sets for vector fields using dynamical conditions on the corresponding generated flows. These conditions are easily verified for all singular-hyperbolic attracting sets of \(C^2\) vector fields using known results, providing robust examples of statistically stable singular attracting sets (encompassing in particular the Lorenz and geometrical Lorenz attractors). These conditions are shown to hold also on the persistent but non-robust family of contracting Lorenz flows (also known as Rovella attractors), providing examples of statistical stability among members of non-open families of dynamical systems. In both instances, our conditions avoid the use of detailed information about perturbations of the one-dimensional induced dynamics on specially chosen Poincaré sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We write \(A+B\) the union of the disjoint subsets A and B.

  2. We write \(f(x)=O(g(x))\) at \(x=x_0\) if there exists \(M,\delta \) such that \(|f(x)|\le M |g(x)|\) when \(0<|x-x_0|<\delta \).

  3. This technical condition was strongly used to derive the stated results; see [42, Remarks, p. 240].

  4. This depends only on the neighborhood \({\mathcal V}\) through d.

  5. This follows from the invariance of the stable manifolds of all points in U together with the closeness of \(y_1\) and \(x_1\), together with the value of d in the neighborbood \({\mathcal V}\).

References

  1. Afraimovich, V.S., Bykov, V.V., Shil’nikov, L.P.: On the appearence and structure of the Lorenz attractor. Dokl. Acad. Sci. USSR 234, 336–339 (1977)

    ADS  Google Scholar 

  2. Alves, J.F., Araujo, V.: Random perturbations of nonuniformly expanding maps. Astérisque 286, 25–62 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Alves, J.F., Khan, M.A.: Statistical instability for contracting Lorenz flows. Nonlinearity 32(11), 4413–4444 (2019)

  4. Alves, J.F., Soufi, M.: Statistical stability and limit laws for Rovella maps. Nonlinearity 25(12), 3527–3552 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. Alves, J., Soufi, M.: Statistical stability of geometric Lorenz attractors. Fundamenta Mathematicae 224(3), 219–231 (2014)

    Article  MathSciNet  Google Scholar 

  6. Alves, J.F., Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140(2), 351–398 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Araujo, V.: Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discret. Continuous Dyn. Syst. 17(2), 371–386 (2007)

    Article  MathSciNet  Google Scholar 

  8. Araujo, V.: Finitely many physical measures for sectional-hyperbolic attracting sets and statistical stability. Ergod. Theory Dyn. Syst. (to appear), 1–28 (2021)

  9. Araujo, V., Cerqueira, J.: On robust expansiveness for sectional hyperbolic attracting sets. arXiv e-prints, arXiv:1910.12095 (2019)

  10. Araujo, V., Melbourne, I.: Exponential decay of correlations for nonuniformly hyperbolic flows with a \(C^{1+\alpha }\) stable foliation, including the classical Lorenz attractor. Annales Henri Poincaré 2975–3004 (2016)

  11. Araujo, V., Melbourne, I.: Existence and smoothness of the stable foliation for sectional hyperbolic attractors. Bull. Lond. Math. Soc. 49(2), 351–367 (2017)

    Article  MathSciNet  Google Scholar 

  12. Araujo, V., Melbourne, I.: Mixing properties and statistical limit theorems for singular hyperbolic flows without a smooth stable foliation. Adv. Math. 349, 212–245 (2019)

    Article  MathSciNet  Google Scholar 

  13. Araujo, V., Pacifico, M.J.: Three-dimensional flows, vol. 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, (2010). With a foreword by Marcelo Viana

  14. Araujo, V., Tahzibi, A.: Stochastic stability at the boundary of expanding maps. Nonlinearity 18, 939–959 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Araujo, V., Tahzibi, A.: Physical measures at the boundary of hyperbolic maps. Discret. Continuous Dyn. Syst. 20, 849–876 (2008)

    Article  MathSciNet  Google Scholar 

  16. Araujo, V., Pacifico, M.J., Pujals, E.R., Viana, M.: Singular-hyperbolic attractors are chaotic. Trans. A.M.S. 361, 2431–2485 (2009)

    Article  MathSciNet  Google Scholar 

  17. Araujo, V., Arbieto, A., Salgado, L.: Dominated splittings for flows with singularities. Nonlinearity 26(8), 2391 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Araujo, V., Melbourne, I., Varandas, P.: Rapid mixing for the lorenz attractor and statistical limit laws for their time-1 maps. Commun. Math. Phys. 340(3), 901–938 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Araujo, V., Souza, A., Trindade, E.: Upper large deviations bound for singular-hyperbolic attracting sets. J. Dyn. Differ. Equ. 31(2), 601–652 (2019)

    Article  MathSciNet  Google Scholar 

  20. Bahsoun, W., Ruziboev, M.: On the statistical stability of Lorenz attractors with a \(c^{1+\alpha }\) stable foliation. Ergod. Theory Dyn. Syst. 1–16 (2018)

  21. Bonatti, C., Díaz, L.J., Viana, M.: Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, A global Geometric and Probabilistic Perspective, vol. 102. Springer, Berlin (2005)

    MATH  Google Scholar 

  22. Bowen, R.: Entropy-expansive maps. Trans. Am. Math. Soc. 164, 323–331 (1972)

    Article  MathSciNet  Google Scholar 

  23. Cowieson, W., Young, L.S.: SRB measures as zero-noise limits. Ergod. Theory Dyn. Syst. 25(4), 1115–1138 (2005)

    Article  MathSciNet  Google Scholar 

  24. Galatolo, S., Nisoli, I., Pacifico, M.J.: Decay of correlations, quantitative recurrence and logarithm law for contracting lorenz attractors. J. Stat. Phys. 170(5), 862–882 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Guckenheimer, J.: A strange, strange attractor. In: The Hopf Bifurcation Theorem and Its Applications, pp. 368–381. Springer (1976)

  26. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES 50, 59–72 (1979)

    Article  MathSciNet  Google Scholar 

  27. Kifer, Y.: Random Perturbations of Dynamical Systems. Progress in Probability and Statistics, vol. 16. Birkhäuser, Boston (1988)

    Book  Google Scholar 

  28. Ledrappier, F., Young, L.S.: The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula. Ann. Math. 122, 509–539 (1985)

    Article  MathSciNet  Google Scholar 

  29. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  30. Mañé, R.: A proof of Pesin’s formula. Ergod. Theory Dyn. Syst. 1, 95–101 (1981)

    Article  MathSciNet  Google Scholar 

  31. Martin, B.S., Vivas, K.J.: Asymptotically sectional-hyperbolic attractors. Discret. Continuous Dyn. Syst. A 39(7), 4057–4071 (2019)

    Article  MathSciNet  Google Scholar 

  32. Metzger, R.J.: Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(2), 247–276 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. Metzger, R.J.: Stochastic stability for contracting Lorenz maps and flows. Commun. Math. Phys. 212(2), 277–296 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  34. Metzger, R.J., Morales, C.A.: Stochastic stability of sectional-anosov flows. PreprintarXiv:1505.01761 (2015)

  35. Morales, C.A., Pacifico, M.J., San Martin, B.: Expanding Lorenz attractors through resonant double homoclinic loops. SIAM J. Math. Anal. 36(6), 1836–1861 (2005)

    Article  MathSciNet  Google Scholar 

  36. Morales, C.A., Pacifico, M.J., San Martin, B.: Contracting Lorenz attractors through resonant double homoclinic loops. SIAM J. Math. Anal. 38(1), 309–332 (2006)

    Article  MathSciNet  Google Scholar 

  37. Pacifico, M.J., Todd, M.: Thermodynamic formalism for contracting Lorenz flows. J. Stat. Phys. 139(1), 159–176 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, Berlin (1982)

    Book  Google Scholar 

  39. Pesin, Y.B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surv. 324, 55–114 (1977)

    Article  ADS  Google Scholar 

  40. Pesin, Y., Sinai, Y.: Gibbs measures for partially hyperbolic attractors. Ergod. Theory Dyn. Syst. 2, 417–438 (1982)

    Article  MathSciNet  Google Scholar 

  41. Robinson, C.: Nonsymmetric Lorenz attractors from a homoclinic bifurcation. SIAM J. Math. Anal. 32(1), 119–141 (2000)

    Article  MathSciNet  Google Scholar 

  42. Rovella, A.: The dynamics of perturbations of the contracting Lorenz attractor. Bull. Braz. Math. Soc. 24(2), 233–259 (1993)

    Article  MathSciNet  Google Scholar 

  43. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris 328, 1197–1202 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  44. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1982)

    Book  Google Scholar 

  45. Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5–6), 733–754 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank the Mathematics Department at UFBA; CAPES-Brazil and CNPq-Brazil for the basic support of research activities; and also the anonymous referee for many suggestions that helped to improve the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Araujo.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by CNPq-Brazil (Grant 300985/2019-3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, V. On the Statistical Stability of Families of Attracting Sets and the Contracting Lorenz Attractor. J Stat Phys 182, 53 (2021). https://doi.org/10.1007/s10955-021-02729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02729-x

Keywords

Mathematics Subject Classification

Navigation