Skip to main content
Log in

Shortest Path Distance in Manhattan Poisson Line Cox Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

While the Euclidean distance characteristics of the Poisson line Cox process (PLCP) have been investigated in the literature, the analytical characterization of the path distances is still an open problem. In this paper, we solve this problem for the stationary Manhattan Poisson line Cox process (MPLCP), which is a variant of the PLCP. Specifically, we derive the exact cumulative distribution function (CDF) for the length of the shortest path to the nearest point of the MPLCP in the sense of path distance measured from two reference points: (i) the typical intersection of the Manhattan Poisson line process (MPLP), and (ii) the typical point of the MPLCP. We also discuss the application of these results in infrastructure planning, wireless communication, and transportation networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aldous, D., Diaconis, P.: Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Relat. Fields 103(2), 199–213 (1995)

    Article  MathSciNet  Google Scholar 

  3. Mertens, S., Moore, C.: Continuum percolation thresholds in two dimensions. Phys. Rev. E 86, 061109 (2012)

    Article  ADS  Google Scholar 

  4. Dettmann, C.P., Georgiou, O.: Random geometric graphs with general connection functions. Phys. Rev. E 93, 032313 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hilhorsta, H.: Statistical properties of planar Voronoi tessellations. Eur. Phys. J. B 64(3–4), 437–441 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Koufos, K., Dettmann, C.P.: Distribution of cell area in bounded Poisson Voronoi tessellations with application to secure local connectivity. J. Stat. Phys. 176(5), 1296–1315 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Goudsmit, S.: Random distribution of lines in a plane. Rev. Mod. Phys. 17(2–3), 321 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hilhorst, H., Calka, P.: Random line tessellations of the plane: statistical properties of many-sided cells. J. Stat. Phys. 132(4), 627–647 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dodson, C., Sampson, W.: Planar line processes for void and density statistics in thin stochastic fibre networks. J. Stat. Phys. 129(2), 311–322 (2007)

    Article  ADS  Google Scholar 

  10. Tykesson, J., Windisch, D.: Percolation in the vacant set of Poisson cylinders. Probab. Theory Relat. Fields 154(1–2), 165–191 (2012)

    Article  MathSciNet  Google Scholar 

  11. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, Chichester (2013)

    Book  Google Scholar 

  12. Miles, R.E.: Random polygons determined by random lines in a plane. Proc. Natl Acad. Sci. USA 52(4), 901–907 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  13. Miles, R.E.: Random polygons determined by random lines in a plane, II. Proc. Natl Acad. Sci. USA 52(5), 1157–1160 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  14. Miles, R.E.: The various aggregates of random polygons determined by random lines in a plane. Adv. Math. 10(2), 256–290 (1973)

    Article  MathSciNet  Google Scholar 

  15. Bartlett, M.: The spectral analysis of line processes. Proc. Fifth Berkeley Symp. Math. Stat. Probab. 3, 135–152 (1967)

    ADS  MathSciNet  Google Scholar 

  16. Davidson, R.: Construction of line processes: second order properties. Izv. Akad. Nauk. Armjan. SSR Ser. Mat. 5, 219–34 (1970)

    MathSciNet  MATH  Google Scholar 

  17. Fairclough, A., Davies, G.: Poisson line processes in 2 space to simulate the structure of porous media: methods of generation, statistics and applications. Chem. Eng. Commun. 92(1), 23–48 (1990)

    Article  Google Scholar 

  18. Rosenfeld, A., Davis, L.S.: Image segmentation and image models. Proc. IEEE 67(5), 764–772 (1979)

    Article  Google Scholar 

  19. Meyer, T., Einstein, H.H.: Geologic stochastic modeling and connectivity assessment of fracture systems in the Boston area. Rock Mech. Rock Eng. 35(1), 23–44 (2002)

    Article  Google Scholar 

  20. Baccelli, F., Klein, M., Lebourges, M., Zuyev, S.: Stochastic geometry and architecture of communication networks. Telecommun. Syst. 7(1), 209–227 (1997)

    Article  Google Scholar 

  21. Gloaguen, C., Fleischer, F., Schmidt, H., Schmidt, V.: Analysis of shortest paths and subscriber line lengths in telecommunication access networks. Netw. Spat. Econ. 10(1), 15–47 (2010)

    Article  MathSciNet  Google Scholar 

  22. Aditya, S., Dhillon, H.S., Molisch, A.F., Behairy, H.: Asymptotic blind-spot analysis of localization networks under correlated blocking using a Poisson line process. IEEE Wireless Commun. Lett. 6(5), 654–657 (2017)

    Article  Google Scholar 

  23. Voss, F., Gloaguen, C., Fleischer, F., Schmidt, V.: Distributional properties of Euclidean distances in wireless networks involving road systems. IEEE J. Sel. Areas Commun. 27(7), 1047–1055 (2009)

    Article  Google Scholar 

  24. Gloaguen, C., Fleischer, F., Schmidt, H., Schmidt, V.: Simulation of typical Cox Voronoi cells with a special regard to implementation tests. Math. Methods Oper. Res. 62(3), 357–373 (2005)

    Article  MathSciNet  Google Scholar 

  25. Gloaguen, C., Fleischer, F., Schmidt, H., Schmidt, V.: Fitting of stochastic telecommunication network models via distance measures and Monte Carlo tests. Telecommun. Syst. 31(4), 353–377 (2006)

    Article  Google Scholar 

  26. Chetlur, V.V., Dhillon, H.S.: Coverage analysis of a vehicular network modeled as Cox process driven by Poisson line process. IEEE Trans. Wireless Commun. 17(7), 4401–4416 (2018)

    Article  Google Scholar 

  27. Chetlur, V.V., Dhillon, H.S.: Coverage and rate analysis of downlink cellular vehicle-to-everything (C-V2X) communication. IEEE Trans. Wireless Commun. 19(3), 1738–1753 (2020)

    Article  Google Scholar 

  28. Chetlur, V.V., Dhillon, H.S.: Success probability and area spectral efficiency of a VANET modeled as a Cox process. IEEE Wireless Commun. Lett. 7(5), 856–859 (2018)

    Article  Google Scholar 

  29. Choi, C., Baccelli, F.: An analytical framework for coverage in cellular networks leveraging vehicles. IEEE Trans. Commun. 66(10), 4950–4964 (2018)

    Google Scholar 

  30. Choi, C., Baccelli, F.: Poisson Cox point processes for vehicular networks. IEEE Trans. Veh. Technol. 67(10), 10160–10165 (2018)

    Article  Google Scholar 

  31. Voss, F., Gloaguen, C., Schmidt, V.: Scaling limits for shortest path lengths along the edges of stationary tessellations. Adv. Appl. Probab. 42(4), 936–952 (2010)

    Article  MathSciNet  Google Scholar 

  32. Haenggi, M.: Stochastic Geometry for Wireless Networks. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  33. Morlot, F.: A population model based on a Poisson line tessellation. Proceedings of Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp. 337–342, May (2012)

  34. Wang, Y., Venugopal, K., Molisch, A.F., Heath, R.W.: MmWave vehicle-to-infrastructure communication: analysis of urban microcellular networks. IEEE Trans. Veh. Technol. 67(8), 7086–7100 (2018)

    Article  Google Scholar 

  35. Aldous, D.J., Shun, J.: Connected spatial networks over random points and a route-length statistic. Stat. Sci. 25(3), 275–288 (2010)

    Article  MathSciNet  Google Scholar 

  36. Chetlur, V.V., Dhillon, H.S., Dettmann, C.P.: Matlab code for the computation of the distribution of shortest path distances in Manhattan Poisson line Cox process (MPLCP) (2020). https://github.com/stochastic-geometry/Shortest-path-distance-MPLCP

Download references

Acknowledgements

This work is supported by the US National Science Foundation (Grant IIS-1633363) and UK Engineering and Physical Sciences Research Council (Grant EP/N002458/1). The authors would like to thank an anonymous reviewer for the constructive feedback that helped in improving this paper. All the code required to reproduce the numerical results is available on GitHub [36].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Vardhan Chetlur.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetlur, V.V., Dhillon, H.S. & Dettmann, C.P. Shortest Path Distance in Manhattan Poisson Line Cox Process. J Stat Phys 181, 2109–2130 (2020). https://doi.org/10.1007/s10955-020-02657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02657-2

Keywords

Navigation