Skip to main content
Log in

A Path-Integral Analysis of Interacting Bose Gases and Loop Gases

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review some recent results on interacting Bose gases in thermal equilibrium. In particular, we study the convergence of the grand-canonical equilibrium states of such gases to their mean-field limits, which are given by the Gibbs measures of classical field theories with quartic Hartree-type self-interaction, and to the Gibbs states of classical gases of point particles. We discuss various open problems and conjectures concerning, e.g., Bose–Einstein condensation, polymers and \(\vert \varvec{\phi } \vert ^{4}\)-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For mathematical results concerning Bose gases at zero temperature and the convergence of the quantum dynamics to the mean-field dynamics the reader is referred to the literature quoted in [1, 2, 5, 8].

  2. A broad introduction to equilibrium statistical mechanics, including a mathematical discussion of the equivalence of the three standard ensembles—micro-canonical, canonical and grand-canonical—can be found in [36].

  3. Readers concerned with mathematical rigor may want to introduce a lattice regularization of the expressions considered below and let the lattice spacing tend to 0 at the end of the calculations; see [2].

References

  1. Fröhlich, J., Knowles, A., Schlein, B., Sohinger, V.: The mean-field limit of quantum Bose gases at positive temperature. arXiv: 2001.01546v1

  2. Fröhlich, J., Knowles, A., Schlein, B., Sohinger, V.: Interacting loop ensembles and Bose gases

  3. Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: A functional integral representation for many boson systems. I. Ann. Henri Poincaré 9, 1229–1273 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: A functional integral representation for many boson systems. II: Correlation functions. Ann. Henri Poincaré 9, 1275–1307 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Lieb, E.H., Seiringer, R., Solvej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Birkhäuser-Verlag, Basel (2005)

    MATH  Google Scholar 

  6. Deuchert, A., Seiringer, R.: Gross-Pitaevskii limit of a homogeneous Bose gas at positive temperature. arXiv: 1901.11363 (2019)

  7. Deuchert, A., Seiringer, R., Yngvason, J.: Bose–Einstein condensation in a dilute, trapped gas at positive temperature. arXiv: 1803.05180 (2018)

  8. Rougerie, N.: Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger. arXiv:2002.02678 (2020)

  9. Pethick, C., Smith, H.: Bose–Einstein Condensation of Dilute Gases. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  10. Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. Oxford Science Publications, Oxford (2003)

    MATH  Google Scholar 

  11. Berlin, T.H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86, 821–835 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Drouffe, J.-M., Itzykson, C.: Statistical Field Theory, vol. 1. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  13. Moshe, M., Zinn-Justin, J.: Quantum field theory in the large N limit: a review. Phys. Rep. 385, 69–228 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Chen, T., Fröhlich, J., Seifert, M.: Renormalization Group Methods: Landau-Fermi Liquid and BCS Superconductor. In: David, F., Ginsparg, P., Zinn-Justin, J. (eds.) Fluctuating Geometries in Statistical Mechanics and Field Theory. Proceedings of Les Houches 62. Elsevier Science, Amsterdam (1995)

    Google Scholar 

  15. Andersen, J.O.: Theory of weakly interacting Bose gases. Rev. Mod. Phys. 76, 599–639 (2004)

    ADS  MATH  Google Scholar 

  16. Lewin, M., Nam, P.T., Rougerie, N.: Classical field theory limit of many-body quantum gibbs states in 2D and 3D. arXiv:1810.08370

  17. Ginibre, J.: Reduced density matrices for quantum gases. I. Limit of infinite volume, J. Math. Phys. 6, 238–251 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Ginibre, J.: Reduced density matrices for quantum gases. II. Cluster property. J. Math. Phys. 6, 252–262 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Ginibre, J.: Reduced density matrices for quantum gases. III. Hard-core potentials. J. Math. Phys. 6, 1432–1446 (1965)

    ADS  MATH  Google Scholar 

  20. Ginibre, J.: Some applications of functional integration in statistical mechanics. In: Houches, L., De Witt, C., Stora, R. (eds.) Mécanique quantique et théorie quantique des champs. EDP Sciences, Hermann (1970)

    Google Scholar 

  21. Süto, A.: Percolation transition in the Bose gas. J. Phys. A 26, 4689–4710 (1993)

    ADS  MathSciNet  Google Scholar 

  22. Süto, A.: Percolation transition in the Bose gas II. J. Phys. A 35, 6995–7002 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Ueltschi, D.: Feynman cycles in the Bose gas. J. Math. Phys. 47, 123303 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  24. de Gennes, P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. 38A, 339–340 (1972)

    ADS  Google Scholar 

  25. Duplantier, B., Pfeuty, P.: \(O(n)\) field theory with \(n\) continuous as a model for equilibrium polymerisation. J. Phys. A 15, L127 (1982)

    ADS  MathSciNet  Google Scholar 

  26. Aizenman, M.: Geometric analysis of \(\phi ^{4}\) fields and Ising models, I, II. Commun. Math. Phys. 86(1), 1–48 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Fröhlich, J.: On the triviality of \(\lambda \phi ^{4}_{d}\) theories and the approach to the criticalpoint in \(d \underset{(=)}{>} 4\) dimensions. Nucl. Phys. B 200(2), 281–296 (1982)

    ADS  Google Scholar 

  28. Aizenman, M., Duminil-Copin, H.: Marginal triviality of the scaling limits of critical 4D Ising and \(\phi ^{4}_{4}\) models. arXiv:1912.07973v1

  29. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    ADS  MathSciNet  Google Scholar 

  30. Fröhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase transitions and refelction positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)

    ADS  Google Scholar 

  31. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)

    ADS  MathSciNet  Google Scholar 

  32. Brydges, D., Spencer, T.C.: Self-avoidiung walk in \(5\) or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)

    ADS  MATH  Google Scholar 

  33. Bauerschmidt, R., Brydges, D., Slade, G.: Critical two-point function of the \(4\)-dimensional weakly self-avoiding walk. Commun. Math. Phys. 338, 169–193 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Bauerschmidt, R., Brydges, D., Slade, G.: Logarithmic correction for the susceptibility of the \(4\)-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys. 337, 817–877 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Bauerschmidt, R., Brydges, D., Slade, G.: Scaling limits and critical behaviour of the \(4\)-dimensional \(n\)-component \(\vert \varphi \vert ^{4}\) spin model. J. Stat. Phys. 157, 692–742 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Ruelle, D.: Statistical Mechanics—Rigorous Results. World Scientific, Imperial College Press, London (1999). (\(1^{st}\) edition published in 1969 by W. A. Benjamin Inc.)

    MATH  Google Scholar 

  37. Ruelle, D.: Analyticity of Green’s functions of dilute quantum gases. J. Math. Phys.12,(1971) 901–903 (1971), (see also: J. Fröhlich, The reconstruction of quantum fields from Euclidean Green’s functions at arbitrary temperatures. Helv. Phys. Acta 48, 355–369 (1975))

  38. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. de l’École Polytechnique - Mathématiques 2, 65–115 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Lewin, M., Nam, P.T., Rougerie, N.: Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits. J. Math. Phys. 59(4), 041901 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Lewin, M., Nam, P.T., Rougerie, N.: Classical field theory limit of 2D many-body quantum Gibbs states. arXiv: 1805.08370v3

  41. Fröhlich, J., Knowles, A., Schlein, B., Sohinger, V.: Gibbs measures of nonlinear Schrödinger equations as limits of many-body quantum states in dimensions \(d\le 3\). Commun. Math. Phys. 356, 883–980 (2017)

    ADS  MATH  Google Scholar 

  42. Fröhlich, J., Knowles, A., Schlein, B., Sohinger, V.: A microscopic derivation of time-dependent correlation functions of the 1D cubic nonlinear Schrödinger equation. Adv. Math. 353, 67–115 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Sohinger, V.: A microscopic derivation of Gibbs measures for nonlinear Schrödinger equations with unbounded interaction potentials. arXiv:1904.08137v2

  44. Pizzo, A.: Bose particles in a box I–III. (2015)

  45. Glimm, J., Jaffe, A.: Quantum Physics—A Functional Integral Point of View. Springer, New York (1987)

    MATH  Google Scholar 

  46. Simon, B.: The \(P(\phi )_{2}\) Euclidean (Quantum) Field Theory. Princeton University Press, Princeton, NJ (1974)

    Google Scholar 

  47. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166, 1–26 (1994)

    ADS  MATH  Google Scholar 

  48. Bourgain, J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176, 421–445 (1996)

    ADS  MATH  Google Scholar 

  49. Bourgain, J.: Invariant measures for the Gross–Pitaevskii equation. J. Math. Pures Appl. 76, 649–702 (1997)

    MathSciNet  MATH  Google Scholar 

  50. Oh, T., Thomann, L.: A pedestrian approach to the invariant Gibbs measure for the 2D defocusing nonlinear Schrödinger equation. Stoch. Part. Diff. Eq. Anal. Comput. 6, 397–445 (2018)

    MATH  Google Scholar 

  51. Dirac, P.A.M.: The Lagrangian in quantum mechanics. Phys. Zeitschrift der Sowjetunion 3, 64–72 (1933)

    MATH  Google Scholar 

  52. Symanzik, K.: Euclidean quantum field theory. In: Jost, R. (ed.) Rendiconti della Scuola Internationale di Fisica Enrico Fermi, XLV Corso, Teoria quantistica locale. Academic Press, New York (1969)

    Google Scholar 

  53. Brydges, D.C.: A short course in cluster expansions. In: Osterwalder, K., Stora, R. (eds.) Proceedings of the 1984 Les Houches School on Critical Phenomena, Random Systems, Gauge Theories, pp. 129–183. Elsevier, Amsterdam (1984)

    Google Scholar 

  54. Ueltschi, D.: Cluster expansions and correlation functions. Mosc. Math. J. 4, 511–522 (2004)

    MathSciNet  MATH  Google Scholar 

  55. Fernandez, R., Procacci, A.: Cluster expansion for abstract polymer models—new bounds from an old approach. Commun. Math. Phys. 274, 123–140 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Fernandez, R., Xuan, N. T.: Convergence of cluster and virial expansions for repulsive classical gases. arXiv:1909.13257v1

  57. Edwards, S.F.: The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. Lond. 85, 613–624 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Westwater, J.: On Edwards’ Model for Polymer Chains, I. Commun. Math. Phys. 72, 131–174 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Berezin, F.A., Faddeev, L.D.: A remark on the Schrödinger equation with a singular potential. Dokl. Akad. Nauk SSSR 137, 1011–1014 (1961)

    MathSciNet  Google Scholar 

  60. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, Texts and Monographs in Physics. Springer, New York (1988)

    MATH  Google Scholar 

  61. Geiler, V.A., Margulis, V.A., Chuchaev, I.I.: Potentials of zero radius and Carleman operators. Siberian Math. J. 36, 714–726 (1995)

    MathSciNet  MATH  Google Scholar 

  62. Erdős, P., Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hung. 11, 137–162 (1960)

    MathSciNet  MATH  Google Scholar 

  63. Erdős, P., Taylor, S.J.: Some intersection properties of random walk paths. Acta Math. Acad. Sci. Hung. 11, 231–248 (1960)

    MathSciNet  MATH  Google Scholar 

  64. Rivasseau, V., Wang, Z.: Constructive renormalization for \(\Phi ^{4}_{2}\) theory with loop vertex expansion. J. Math. Phys. 53, 042302 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Rivasseau, V., Wang, Z.: Corrected loop vertex expansion for \(\Phi ^{4}_{2}\) theory. J. Math. Phys. 56(6), 062301 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank David Brydges, Alessandro Pizzo and Daniel Ueltschi for very useful discussions and some correspondence on problems related to the ones studied in this paper. We are grateful to Mathieu Lewin, Phan Thành Nam and Nicolas Rougerie for informing us about their beautiful results [16] prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Fröhlich.

Additional information

Editorial Responsibiility: Ivan Corwin.

Dedicated to Joel L. Lebowitz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlich, J., Knowles, A., Schlein, B. et al. A Path-Integral Analysis of Interacting Bose Gases and Loop Gases. J Stat Phys 180, 810–831 (2020). https://doi.org/10.1007/s10955-020-02543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02543-x

Keywords

Navigation