Skip to main content
Log in

Subdiffusion in One-Dimensional Hamiltonian Chains with Sparse Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We establish rigorously that transport is slower than diffusive for a class of disordered one-dimensional Hamiltonian chains. This is done by deriving quantitative bounds on the variance in equilibrium of the energy or particle current, as a function of time. The slow transport stems from the presence of rare insulating regions (Griffiths regions). In many-body disordered quantum chains, they correspond to regions of anomalously high disorder, where the system is in a localized phase. In contrast, we deal with quantum and classical disordered chains where the interactions, usually referred to as anharmonic couplings in classical systems, are sparse. The system hosts thus rare regions with no interactions and, since the chain is Anderson localized in the absence of interactions, the non-interacting rare regions are insulating. Part of the mathematical interest of our model is that it is one of the few non-integrable models where the diffusion constant can be rigorously proven not to be infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The first instances of disordered harmonic chains have been introduced in [6, 7]. Because of momentum conservation, the localization length diverges in the bottom of the spectrum for these models, yielding a more complicated phenomenology. We will not deal with such cases here.

  2. More precisely, it rests on the sparsity of loops and the presence of bottlenecks, see [34].

References

  1. Lepri, S. (ed.): Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921. Springer, New York (2016)

    Google Scholar 

  2. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  3. Gol’dshtein, I.Ya., Molchanov, S.A., Pastur, L.A.: A pure point spectrum of the stochastic one-dimensional Schrödinger operator. Funct. Anal. Appl. 11(1), 1–8 (1977)

    Article  Google Scholar 

  4. Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys. 78(2), 201–246 (1980)

    Article  ADS  Google Scholar 

  5. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  6. Rubin, R.J., Greer, W.L.: Abnormal lattice thermal conductivity of a one-dimensional, harmonic, isotopically disordered crystal. J. Math. Phys. 12(8), 1686–1701 (1971)

    Article  ADS  Google Scholar 

  7. Casher, A., Lebowitz, J.L.J.L.: Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12(8), 1701–1711 (1971)

    Article  ADS  Google Scholar 

  8. Bernardin, C., Huveneers, F.: Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential. Probab. Theory Relat. Fields 157(1), 301–331 (2013)

    Article  MathSciNet  Google Scholar 

  9. Fleishman, L., Anderson, P.W.: Interactions and the Anderson transition. Phys. Rev. B 21(6), 2366 (1980)

    Article  ADS  Google Scholar 

  10. Gornyi, I., Mirlin, A., Polyakov, D.: Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95(20), 206603 (2005)

    Article  ADS  Google Scholar 

  11. Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321(5), 1126–1205 (2006)

    Article  ADS  Google Scholar 

  12. Oganesyan, V., Huse, D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  13. Serbyn, M., Papić, Z., Abanin, D.: Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111(12), 127201 (2013)

    Article  ADS  Google Scholar 

  14. Imbrie, J.: On many-body localization for quantum spin chains. J. Stat. Phys. 163(5), 998–1048 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bardarson, J.H., Pollmann, F., Schneider, U., Sondhi, S. (eds.): Special Issue Many-Body Localization, Volume 529(7) of Annalen der Physik. Wiley, Hoboken (2017)

    Google Scholar 

  16. Dhar, A., Lebowitz, J.L.: Effect of phonon–phonon interactions on localization. Phys. Rev. Lett. 100, 134301 (2008)

    Article  ADS  Google Scholar 

  17. Oganesyan, V., Pal, A., Huse, D.: Energy transport in disordered classical spin chains. Phys. Rev. B 80(11), 115104 (2009)

    Article  ADS  Google Scholar 

  18. Mulansky, M., Ahnert, K., Pikovsky, A., Shepelyansky, D.: Dynamical thermalization of disordered nonlinear lattices. Phys. Rev. E 80, 056212 (2009)

    Article  ADS  Google Scholar 

  19. Basko, D.: Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion. Ann. Phys. 326(7), 1577–1655 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. Agarwal, K., Gopalakrishnan, S., Knap, M., Müller, M., Demler, E.: Anomalous diffusion and Griffiths effects near the many-body localization transition. Phys. Rev. Lett. 114(16), 160401 (2015)

    Article  ADS  Google Scholar 

  21. Gopalakrishnan, S., Agarwal, K., Demler, E., Huse, D., Knap, M.: Griffiths effects and slow dynamics in nearly many-body localized systems. Phys. Rev. B 93(13), 134206 (2016)

    Article  ADS  Google Scholar 

  22. Agarwal, K., Altman, E., Demler, E., Gopalakrishnan, S., Huse, D.A., Knap, M.: Rare-region effects and dynamics near the many-body localization transition. Ann. Phys. 529(7), 1600326 (2017)

    Article  MathSciNet  Google Scholar 

  23. Potter, A.C., Vasseur, R., Parameswaran, S.A.: Universal properties of many-body delocalization transitions. Phys. Rev. X 5(3), 031033 (2015)

    Google Scholar 

  24. Altman, E., Vosk, R.: Universal dynamics and renormalization in many-body-localized systems. Annu. Rev. Condens. Matter Phys. 6(1), 383–409 (2015)

    Article  ADS  Google Scholar 

  25. Lev, Y.B., Cohen, G., Reichman, D.R.: Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice. Phys. Rev. Lett. 114(10), 100601 (2015)

    Article  MathSciNet  Google Scholar 

  26. Luitz, D.J., Laflorencie, N., Alet, F.: Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B 93(6), 060201 (2016)

    Article  ADS  Google Scholar 

  27. Luitz, D.J., Lev, Y.B.: Anomalous thermalization in ergodic systems. Phys. Rev. Lett. 117, 170404 (2016)

    Article  ADS  Google Scholar 

  28. Luitz, D.J., Lev, Y.B.: The ergodic side of the many-body localization transition. Ann. Phys. 529(7), 1600350 (2017)

    Article  MathSciNet  Google Scholar 

  29. Žnidarič, M., Scardicchio, A., Varma, V.K.: Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system. Phys. Rev. Lett. 117(4), 040601 (2016)

    Article  ADS  Google Scholar 

  30. Kozarzewski, M., Prelovšek, P., Mierzejewski, M.: Spin subdiffusion in the disordered Hubbard chain. Phys. Rev. Lett. 120(24), 246602 (2018)

    Article  ADS  Google Scholar 

  31. Roy, S., Lev, Y.B., Luitz, D.J.: Anomalous thermalization and transport in disordered interacting floquet systems. Phys. Rev. B 98(6), 060201 (2018)

    Article  ADS  Google Scholar 

  32. Mendoza-Arenas, J.J., Žnidarič, M., Varma, V.K., Goold, J., Clark, S.R., Scardicchio, A.: Asymmetry in energy versus spin transport in certain interacting disordered systems. Phys. Rev. B 99(9), 094435 (2019)

    Article  ADS  Google Scholar 

  33. Schulz, M., Taylor, S.R., Hooley, C.A., Scardicchio, A.: Energy transport in a disordered spin chain with broken U(1) symmetry: diffusion, subdiffusion, and many-body localization. Phys. Rev. B 98(18), 180201 (2018)

    Article  ADS  Google Scholar 

  34. De Tomasi, G., Bera, S., Scardicchio, A., Khaymovich, I.M.: Sub-diffusion in the Anderson Model on Random Regular Graph. arXiv:1908.11388 (2019)

  35. Nachtergaele, B., Reschke, J.: Slow Propagation in Some Disordered Quantum Spin Chains. arXiv:1906.10167 (2019)

  36. Alicki, R., Fannes, M.: Quantum Dynamical Systems. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  37. Abdul-Rahman, H., Nachtergaele, B., Sims, R., Stolz, G.: Localization properties of the disordered XY spin chain: a review of mathematical results with an eye toward many-body localization. Ann. Phys. 529(7), 1600280 (2017)

    Article  MathSciNet  Google Scholar 

  38. De Roeck, W., Huveneers, F.: Glassy Dynamics in Strongly Anharmonic Chains of Oscillators. arXiv:1904.07742 (2019)

  39. De Roeck, W., Huveneers, F.: Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017)

    Article  ADS  Google Scholar 

  40. Luitz, D.J., Huveneers, F., De Roeck, W.: How a small quantum bath can thermalize long localized chains. Phys. Rev. Lett. 119, 150602 (2017)

    Article  ADS  Google Scholar 

  41. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry. Springer, New York (1987)

    Book  Google Scholar 

  42. Damanik, D.: A Short Course on One-Dimensional Random Schrödinger Operators. arXiv:1107.1094 (2011)

  43. Ducatez, R.: A Forward–Backward Random Process for the Spectrum of 1D Anderson Operators. arXiv:1711.11302 (2017)

  44. Helffer, B.: Remarks on decay of correlations and witten Laplacians Brascamp–Lieb inequalities and semiclassical limit. J. Funct. Anal. 155(2), 571–586 (1998)

    Article  MathSciNet  Google Scholar 

  45. Helffer, B.: Remarks on decay of correlations and Witten Laplacians III. Application to logarithmic Sobolev inequalities. Ann. Inst. Henri Poincare B 35(4), 483–508 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  46. Bodineau, T., Helffer, B.: Correlations, spectral gap, and Log–Sobolev inequalities for unbounded spin systems. In: Weikard, R., Weinstein, G., editors, Studies in Advanced Mathematics, Differential Equations and Mathematical Physics, vol. 16, pp. 51–66. AMS/IP (2000)

Download references

Acknowledgements

We are most grateful to David A. Huse and J. L. Lebowitz who suggested the study of the disordered models introduced in this paper. The work of F. H. and S. O. was partially supported by the Grant ANR-15-CE40-0020-01 LSD of the French National Research Agency (ANR). F. H. acknowledges also the support of the ANR under grant ANR-14-CE25-0011 EDNHS. W. D. R. acknowledges the support of the Flemish Research Fund FWO under Grants G098919N and G076216N, and the support of KULeuven University under internal Grant C14/16/062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Huveneers.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Joel L. Lebowitz, for being a constant source of inspiration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Roeck, W., Huveneers, F. & Olla, S. Subdiffusion in One-Dimensional Hamiltonian Chains with Sparse Interactions. J Stat Phys 180, 678–698 (2020). https://doi.org/10.1007/s10955-020-02496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02496-1

Navigation